Dr. Sher Blog

Official blog of Dr. Geoffrey Sher

Ask Dr. Sher- Open Forum

by Dr. Geoffrey Sher on December 1, 2015

You are not alone. Dr. Sher is here to answer your questions and support you.

If you would like to schedule a one on one Skype, telephone, or in person consultation with Dr. Sher, please fill out the form on the right and our team will get you scheduled right away.

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Share this post:

16,509 comments

Leave A Reply
  • Prisca - July 15, 2018 reply

    For my IVF cycle the doctor found no eggs in my follicles. I had 6 follicles that were mature, I stimulated well.
    What is the reason that I had no follicles. I am 46 years old, I want to try another cycle do you think this will happen again where there will be no eggs in the follicles.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 15, 2018 reply

    At 46y of age, tyour chance of conceiving with own eggs is <5%. You need IVF with egg donation.

    Egg donation is the process by which a woman donates eggs for purposes of assisted reproduction or biomedical research. For assisted reproduction purposes, egg donation typically involves in vitro fertilization (IVF) technology, with the eggs being fertilized in the laboratory, unfertilized eggs may be frozen and stored for later use. Egg donation is a third party reproduction as part of assisted reproductive technology (ART).
    For many women, disease and/or diminished ovarian reserve precludes achieving a pregnancy with their own eggs. Since the vast majority of such women are otherwise quite healthy and physically capable of bearing a child, egg donation (ED) provides them with a realistic opportunity of going from infertility to parenthood.
    Egg donation is associated with definite benefits. Firstly, in many instances, more eggs are retrieved from a young donor than would ordinarily be needed to complete a single IVF cycle. As a result, there are often supernumerary (leftover) embryos for cryopreservation and storage. Secondly, since eggs derived from a young woman are less likely than their older counterparts to produce aneuploid (chromosomally abnormal) embryos, the risk of miscarriage and birth defects such as Down’s syndrome is considerably reduced.
    Egg Donation-related, fresh and frozen embryo transfer cycles account for 10%-15% of IVF performed in the United States. The vast majority of egg donation procedures performed in the U.S involve women with declining ovarian reserve. While some of these are done for premature ovarian failure, the majority are undertaken in women over 40 years of age. Recurrent IVF failure due to “poor quality” eggs or embryos is also a relatively common indication for ED in the U.S. A growing indication for ED is in cases of same-sex relationships (predominantly female) where both partners wish to share in the parenting experience by one serving as egg provider and the other, as the recipient.
    Ninety percent of egg donation in the U.S is done through the solicitation of anonymous donors who are recruited through a state-licensed egg donor agency. It is less common for recipients to solicit known donors through the services of a donor agency, although this does happen on occasion. It is also not easy to find donors who are willing to enter into such an open arrangement. Accordingly, in the vast majority of cases where the services of a known donor is solicited, it is by virtue of a private arrangement. While the services of non-family members are sometimes sought, it is much more common for recipients to approach close family members to serve as their egg donor.
    Some recipients feel the compulsion to know or at least to have met their egg donor, so as to gain first hand familiarity with her physical characteristics, intellect, and character. This having been said, in the U.S. it is much more common to seek the services of anonymous donors. In terms of disclosure to their family, friends and child(ren), recipients using anonymous donors tend to be far more open than those of known donors about the nature of the child’s conception. Most, if not all, egg donor agencies provide a detailed profile, photos, medical and family history of each prospective donor for the benefit and information of the recipient. Agencies generally have a website through which recipients can access donor profiles in the privacy of their own homes in order to select the ideal donor.
    Interaction between the recipient and the egg donor program may be conducted in-person, by telephone or online in the initial stages. Once the choice of a donor has been narrowed down to two or three, the recipient is asked to forward all relevant medical records to their chosen IVF physician. Upon receipt of her records, a detailed medical consultation will subsequently held and a physical examination by the treating physician or by a designated alternative qualified counterpart is scheduled. This entire process is usually overseen, facilitated and orchestrated by one of the donor program’s nurse coordinators who, in concert with the treating physician, will address all clinical, financial and logistical issues, as well as answering any questions. At the same time, the final process of donor selection and donor-recipient matching is completed.
    Egg donor agencies usually limit the age of egg donors to women under 35 years with normal ovarian reserve in an attempt to minimize the risk of ovarian resistance and negate adverse influence of the “biological clock” (donor age) on egg quality.
    No single factor instills more confidence regarding the reproductive potential of a prospective egg donor than a history of her having previously achieved a pregnancy on her own, or that one or more recipients of her eggs having achieved a live birth. Moreover, such a track record makes it far more likely that such an ED will have “good quality eggs”. Furthermore, the fact that an ED readily conceived on her own lessens the likelihood that she herself has tubal or organic infertility. This having been said, the current shortage in the supply of egg donors makes it both impractical and unfeasible, to confine donor recruitment to those women who could fulfill such stringent criteria for qualification.
    It is not unheard of for a donor who, at some point after donating eggs, finds herself unable to conceive on her own due to pelvic adhesions or tubal disease, to blame her infertility on complications caused by the prior surgical egg retrieval process. She may even embark upon legal proceedings against the IVF physician and program. It should therefore come as no surprise that it provides a measurable degree of comfort to ED program when a prospective donor is able to provide evidence of having experienced a relatively recent, trouble free spontaneous pregnancy.
    Screening of Donors
    Genetic Screening: The vast majority of IVF programs in the U.S. follow the recommendations and guidelines of the American Society of Reproductive Medicine (ASRM) for selectively genetic screening of prospective egg donors for conditions such as sickle cell trait or disease, thallasemia, cystic fibrosis and Tay Sachs disease, when medically indicated. Consultation with a geneticist is available through about 90% of programs.
    Most recipient couples place a great deal of importance on emotional, physical, ethnic, cultural and religious compatibility with their chosen egg donor. In fact they often will insist that the egg donor be heterosexual.
    Psychological Screening: Americans tend to place great emphasis on psychological screening of egg donors. Since most donors are “anonymous,” it is incumbent upon the ED agency or the IVF program to determine the donor’s degree of commitment as well as her motivation for deciding to provide this service. I have on occasions encountered donors who have buckled under the stress and defaulted mid-stream during their cycle of stimulation with gonadotropins. In one case, a donor knowingly stopped administering gonadotropins without informing anyone. She simply awaited cancellation, which was effected when follicles stopped growing and her plasma E2 concentration failed to rise.
    Such concerns mandate that assessment of donor motivation and commitment be given appropriate priority. Most recipients in the U.S. tend to be very much influenced by the “character” of the prospective egg donor, believing that a flawed character is likely to be carried over genetically to the offspring. In reality, unlike certain psychoses such as schizophrenia or bipolar disorders, character flaws are usually neuroses and are most likely to be determined by environmental factors associated with upbringing. They are unlikely to be genetically transmitted. Nevertheless, egg donors should be subjected to counseling and screening and should be selectively tested by a qualified psychologists. When in doubt, they should be referred to a psychiatrist for more definitive testing. Selective use of tests such as the MMPI, Meyers-Briggs and NEO-Personality Indicator are used to assess for personality disorders. Significant abnormalities, once detected, should lead to the automatic disqualification of such prospective donors.
    When it comes to choosing a known egg donor, it is equally important to make sure that she was not coerced into participating. We try to caution recipients who are considering having a close friend or family member serve as their designated egg donor, that in doing so, the potential always exists that the donor might become a permanent and an unwanted participant in the lives of their new family.
    Drug Screening: Because of the prevalence of substance abuse in our society, we selectively call for urine and/or serum drug testing of our egg donors.
    Screening for STDs: FDA and ASRM guidelines recommend that all egg donors be tested for sexually transmittable diseases before entering into a cycle of IVF. While it is highly improbable that DNA and RNA viruses could be transmitted to an egg or an embryo through sexual intercourse or IVF, women infected with viruses such as hepatitis B, C, HTLV, HIV etc, must be disqualified from participating in IVF with egg donation due to the (abeit remote) possibility of transmission, as well as the potential legal consequences of the egg donation process being blamed for their occurrence.
    In addition, evidence of prior or existing infection with Chlamydia or Gonococcus introduces the possibility that the egg donor might have pelvic adhesions or even irreparably damaged fallopian tubes that might have rendered her infertile. As previously stated, such infertility, subsequently detected might be blamed on infection that occurred during the process of egg retrieval, exposing the caregivers to litigation. Even if an egg donor or a recipient who carries a sexually transmittable viral or bacterial agent is willing to waive all rights of legal recourse, a potential risk still exists that a subsequently affected offspring might in later in life sue for wrongful birth.
    Screening of the Recipient

    Medical Evaluation: while advancing age, beyond 40 years, is indeed associated with an escalating incidence of pregnancy complications, such risks are largely predicable through careful medical assessment prior to pregnancy. The fundamental question namely: “is the woman capable of safely engaging a pregnancy that would culminate in the safe birth of a healthy baby” must be answered in the affirmative, before any infertility treatment is initiated. For this reason, a thorough cardiovascular, hepatorenal, metabolic and anatomical reproductive evaluation must be done prior to initiating IVF in all cases.
    Infectious Screening: the need for careful infectious screening for embryo recipients cannot be overemphasized. Aside from tests for debilitating sexually transmittable diseases, there is the important requirement that cervical mucous and semen be free of infection with ureaplasma urealyticum. This organism which rarely causes symptoms frequents the cervical glands of 15-20% of women in the U.S. The introduction of an embryo transfer catheter via a so infected cervix might transmit the organism into an otherwise sterile uterine cavity leading to early implantation failure and/or first trimester miscarriage.
    Immunologic Screening: Certain autoimmune and alloimmune disorders (see elsewhere) can be associated with immunologic implantation dysfunction (IID). In order to prevent otherwise avoidable treatment failure, it is advisable to evaluate the recipient for autoimmune IDD and also to test both the recipient and the sperm provider for alloimmune similarities that could compromise implantation.
    Disclosure and Consent
    Preparation for egg donation requires full disclosure to all participants regarding what each step of the process involves from start to finish, as well as potential medical and psychological risks. This necessitates that significant time be devoted to this task and that there be a willingness to painstakingly address all questions and concerns posed by all parties involved in the process. An important component of full disclosure involves clear interpretation of the medical and psychological components assessed during the evaluation process. All parties should be advised to seek independent legal counsel so as to avoid conflicts of interest that might arise from legal advice given by the same attorney. Appropriate consent forms are then reviewed and signed independently by the donor and the recipient couple.
    Most embryo recipients fully expect their chosen donor to yield a large number of mature, good quality eggs, sufficient to provide enough embryos to afford a good chance of pregnancy as well as several for cryopreservation (freezing) and storage. While such expectations ore often met, this is not always the case. Accordingly, to minimize the trauma of unexpected and usually unavoidable disappointment, it is essential that in the process of counseling and of consummating agreements, the respective parties be fully informed that by making best efforts to provide the highest standards of care, the caregivers can only assure optimal intent and performance in keeping with accepted standards of care. No one can ever promise an optimal outcome. All parties should be made aware that no definitive representation can or will be made as to the number or quality of ova and embryos that will or are likely to become available, the number of supernumerary embryos that will be available for cryopreservation or the subsequent outcome of the IVF donor process.
    TYPES OF EGG DONATION

    Conventional Egg Donation: This is the basic format used for conducting the process of egg donor IVF. It involves synchronizing the menstrual cycles of both the recipient and the donor by placing the donor and the recipient on a birth control pill so that both parties start stimulation with fertility drugs simultaneously. This ultimately allows for precise timing of the fresh embryo transfer. Using this approach, the anticipated egg donation birth rate is >50% per cycle.
    Preimplantation Genetic Sampling (PGS)-Egg Donation: The recent introduction of complete numerical chromosomal assessment (karyotyping) using metaphase Comparative Genomic Hybridization (mCGH) and Next Generation Gene sequencing (NGS) has the potential to change the manner in which egg donation will be performed in the future. CGH/NGS allows full egg/embryo chromosome analysis providing a 70- 80% assurance that the embryo(s) so selected for transfer are highly likely to be “competent” (i.e. capable of producing a healthy baby). Such PGS-egg selection provides about a 50% chance of a baby per transfer of an embryo derived through fertilization of a pre-vitrified euploid egg. This is at least double that reported when conventional egg donation is used. As a result, mCGH/NGS-Egg Donation allows for excellent results when one or two embryos are transferred, virtually eliminating the risk of “high order” multiple pregnancies (triplets or greater). Moreover, since numerical chromosomal irregularities (aneuploidy) are responsible for most miscarriages, the use of CGH also significantly reduces this dreaded complication.
    PGS egg selection of necessity mandates the use of Staggered (ST)- IVF. Here the egg donor cycle is divided into two parts. The first involves the egg retrieval, fertilization, embryo biopsy for PGS analysis and embryo cryostorage. The second part involving warming or thawing of the frozen embryo(s) and the subsequent transfer of “competent” embryo(s) to the recipient’s uterus is conducted electively at least several weeks later once the results of PGS testing are available. Since, with St-IVF the egg retrieval and embryo transfer are separated in time, the retrieval can be performed without first having to synchronize the menstrual cycles of the recipient and the egg the donor. In fact, the recipient does not even have to be available when the egg donor is going through cycle. All that is needed is for designated sperm to be available (fresh or frozen) on the day of egg retrieval. This avoids unnecessary travel and inconvenience, and minimizes stress and cost.
    Donor Egg Banking: Another imminent advance is the introduction of egg banking. Being able to freeze and bank donor eggs would solve most of these challenges. By using PGS in combination with a egg vitrification (ultra-rapid freezing), we are now capable of improving the birth rate per warmed/thawed egg by a factor of 3-4 fold (from a previous average of <8% per egg to about 27%). Through an electronic catalogue, recipients will be able to select and purchase 1-3 CGH-normal eggs from the comfort of their homes. Thereupon, the selective transfer of 1 or 2 embryos derived from such chromosomally normal eggs could achieve a 50-60% pregnancy rate without the risk of initiating high-order multiple pregnancies in the process. Through this process, the cost, inconvenience and risks associated with “conventional” fresh egg donor cycles would also be reduced significantly.
    Financial Considerations
    The fee paid to the egg donor agency per cycle usually ranges between $2,000 and $8,000. This does not include the cost associated with psychological and clinical pre-testing, fertility drugs, and donor insurance, which commonly range between $3,000 and $6,000. The medical service costs of the IVF treatment cycle ranges between $8,000 and $14,000. The donor stipend can range from $2,000 too as high $50,000 depending upon the exotic requirements of the recipient couple as well as supply and demand. Thus the total out of pocket expenses for an egg donor cycle in the United States range between $15,000 and $78,000, putting egg donation outside the financial capability of most couples needing this service.
    The growing gap between need and affordability has spawned a number of creative ways to try and make IVF with egg donation more affordable. Here are a few examples:
    • Egg banking (see above)
    • Egg Donor Sharing, where one comprehensive fee is shared between two recipients and the eggs are then divided between them. The downside is that fewer eggs are available embryos for transfer and/or cryopreservation.
    • Egg Bartering, where in the course of conventional IVF, a woman undergoing IVF remits some of her eggs to the clinic (who in turn provides it to a recipient patient) in exchange for a deferment of some or all of the IVF fee. In my opinion, such an arrangement can be fraught with problems. For example, in the event that the woman donating some of her eggs fails to conceive while the recipient of her eggs does, it is very possible that she might suffer emotional despair and even go so far as to seek out her genetic offspring. Such action could be very damaging to both her and the recipient, as well as the child.
    • Financial Risk Sharing. Certain IVF programs offer financial risk sharing (FRS) which most recipient couples favor greatly. FRS offers qualifying candidates a refund of fees paid if egg donation is unsuccessful. FRS is designed to spread the risk between the providers, and the recipient couple.
    Moral, Legal & Ethical Considerations: The “Uniform Parentage Act” which has been adopted by most states in the United States declares that the woman who gives birth to the child will be regarded as the rightful mother. Accordingly, there has to date not been any grounds for legal dispute when it comes to maternal custody of a child born through IVF with egg donation in the majority of states. In a few states such as Mississippi and Arizona the law is less clear but nevertheless, as yet, has not been contested.
    The moral-ethical and religious implications of egg donation are diverse and have a profound effect on cultural acceptance of this process. The widely held view that everyone is entitled to their own opinion and has the right to have such opinions respected, governs much of the attitude towards this process in the U.S. The extreme views on each end of the spectrum hold the gentle central swing of the pendulum in place. This attitude is a reflection of the general acceptance in the united states of diverse views and opinions and the willingness to allow free expression of such views and beliefs provided that they don’t infringe on the rights of others.
    So where do we go from here? Can and should we, cryopreserve and store eggs or ovarian tissue from a young woman wishing to defer procreation until it becomes convenient? And if we do this, would it be acceptable to eventually have a woman give birth to her own sister or aunt? Can or should we store viable ovarian tissue through generations. Should egg donation simply become a future source of embryos generated for the purpose of providing stem cells, to be used in the treatment of disease states or to “manufacture” fetuses as a source of spare body parts? If the answer to even some of these questions is yes…what about the checks and balances. Who will exercise control and where what form should such control take? Are we willing to engage this slippery slope where the disregard for the dignity of the human embryo leads us to the point where the rights of a human being are more readily ignored? …………………… Personally, I hope not.

    If you are interested in my advice or medical services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com. You can also apply online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Lisa - July 15, 2018 reply

    Hi Dr. Sher, I’m 33, AMH 0.3 AFC 1-2 and only retrieve 1 or 2 mature eggs with stims. Despite my low egg numbers they always fertilize and make it to blast (PGD tested normal) and I was able to get pregnant last year. Is it possible that an IUI would be a decent treatment option for someone like me who doesn’t seem to have an egg quality problem? Since IVF is a numbers game and I don’t get more than 1 or 2 anyway I am wondering if an IUI would be almost as effective. Thanks!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 15, 2018 reply

    Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview
    I invite you to arrange to have a Skype or an in-person consultation with me to discuss your case in detail. If you are interested, please contact Julie Dahan, at:

    Email: Julied@sherivf.com

    OR

    Phone: 702-533-2691
    800-780-7437

    I also suggest that you access the 4th edition of my book ,”In Vitro Fertilization, the ART of Making Babies”. It is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

  • Neha Kajaria - July 14, 2018 reply

    Hello Dr Sher. I am 33, AMH level of 5.5 and have gone through 2 failed IVF cycles – 1 mini IVF and 1 full IVF. During my mini IVF, I took Follistim and Ganerilix. I got 10 eggs, 5 fertilized, 2 embryos were tested for genetically normal. 1 embryo led to chemical pregnancy and 2nd embryo failed to implant.
    In my 2nd IVF cycle, I was taking Menopur, Gonal-f, Cetrotide and Lupron. I got 16 eggs, 8 matured and only 1 fertilized. My doctor thinks this is because of poor quality eggs and we might need to change the medicine protocol. Do you have any suggestions as to how I can change medicine protocol or improve egg quality? Thank you.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 15, 2018 reply

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • ella hamed - July 14, 2018 reply

    hi dr, i have a male embryo with the following result: mosaic partial trisomy 9q12 and mosaic partial trisomy 14 q32, do you recommend transferring? thank you so much for your time.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    Yes I do!

    Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or pre-implantation embryo development, and represents a major cause of early pregnancy loss. About a decade ago, I and an associate, Levent Keskintepe Ph.D were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3 fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
    Most IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, there is now growing evidence to suggest that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “autocorrection”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases occurring within our IVF network. So clearly , summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring.
    Thus by discarding aneuploid embryos the possibility exists that we could be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.
    The basis for such embryo “autocorrection” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.” As stated, some mosaic embryos will In the process of subsequent cell replication convert to the normal euploid state (i.e. autocorrect)
    It is against this background, that an ever increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:
    1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “autocorrection”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
    2. “Mitotic aneuploidy” occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically euploid early embryo mutate and become aneuploid. This is referred to as mosaicism. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will be “competent” and capable of propagating a normal conceptus.
    Since some mitotically aneuploid (“mosaic”) embryos can, and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to differentiate between these two varieties of aneuploidy would be of considerable clinical value. And would provide a strong argument in favor of preserving certain aneuploid embryos for future dispensation.
    Aneuploidy, involves the addition (trisomy) or subtraction (monosomy) of one chromosome in a given pair. As previously stated, some aneuploidies are meiotic in origin while others are mitotic “mosaics”. Certain aneuploidies involve only a single, chromosome pair (simple aneuploidy) while others involve more than a single pair (i.e. complex aneuploidy). Aside from monosomy involving absence of the y-sex chromosome (i.e. XO) which can resulting in a live birth (Turner syndrome) all monosomies involving autosomes (non-sex chromosomes) are lethal and will not result in viable offspring). Some autosomal meiotic aneuploidies, especially trisomies 13, 18, 21, can progress to viable, but severely chromosomally defective babies. All other meiotic autosomal trisomies will almost invariably, either not attach to the uterine lining or upon attachment, will soon be rejected. All forms of meiotic aneuploidy are irreversible while mitotic aneuploidy (“mosaicism) often autocorrects in the uterus. Most complex aneuploidies are meiotic in origin and will almost invariably fail to propagate viable pregnancies.
    There is presently no microscopic or genetic test that can reliable differentiate between meiotic and mitotic aneuploidy. Notwithstanding this, the fact that some “mosaic” embryos can autocorrect in the uterus, makes a strong argument in favor of transferring aneuploid of embryos in the hope that the one(s) transferred might be “mosaic” and might propagate viable healthy pregnancies. On the other hand, it is the fear that embryo aneuploidy might result in a chromosomally abnormal baby that has led many IVF physicians to strongly oppose the transfer of any aneuploid embryos to the uterus.
    While certain meiotic aneuploid trisomies (e.g. trisomies 13, 18, & 21) can and sometimes do result in chromosomally defective babies, no other meiotic autosomal trisomies can do so. Thus the transfer of trisomic embryos in the hope that one or more might be mosaic, should exclude the use of embryos with trisomies 13, 18 or 21. Conversely, no autosomal monosomic embryos are believed to be capable of resulting in viable pregnancies, thereby making the transfer of autosomally monosomic embryos, in the hope that they are “mosaic”, a far less risky proposition. Needless to say, if such action is being contemplated, it is absolutely essential to make full disclosure to the patient (s) , and to insure the completion of a detailed informed consent agreement which would include a commitment by the patient (s) to undergo prenatal genetic testing aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.

    Geoff Sher

  • Crystal - July 14, 2018 reply

    Does frozen PESA sperm take longer to fertilize an egg?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    Not at all!

    Geoff Sher

    Crystal - July 14, 2018 reply

    Ok thanks I had a retrieval yesterday I had 27 eggs only 2 fertilized and they told me their watching 11 more. They said it was normal for frozen pesa sperm to take longer when fertilizing.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 15, 2018 reply

    Good luck!

    Geoff Sher

    Crystal - July 14, 2018 reply

    Do you recommend me doing a 3 day transfer since I only have 2?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 15, 2018 reply

    You could do…but since embryos that do not develop into blastocysts are abnormal anyway and would not have propagated a viable pregnancy had they been transferred earlier, my preference is to do blastocyst transfers.

    Geoff Sher

  • JYOTI - July 14, 2018 reply

    Dr. Sher, I am 35 year old at an AMH of 1.37ng/ml. All other hormone levels well within normal range. We are planning to start IVF in the next cycle. We met two doctors to decide and finalize our treatment plan. One suggested 300iu gonal f compared to 225iu gonal f and 150iu menopur suggested by the second. Which stimulation combination in your experience would be recommended and best in our case please? Thanks a lot. Your advice means a lot to us.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview
    I invite you to arrange to have a Skype or an in-person consultation with me to discuss your case in detail. If you are interested, please contact Julie Dahan, at:

    Email: Julied@sherivf.com

    OR

    Phone: 702-533-2691
    800-780-7437

    I also suggest that you access the 4th edition of my book ,”In Vitro Fertilization, the ART of Making Babies”. It is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

  • TB77 - July 14, 2018 reply

    Hi Dr. Sher,
    This was my first round of ivf after 5 unsuccessful IUI rounds (one ended in chemical). My hcg levels have been slow to rise but have been increasing every 48 hours. Two days ago at 20dp5dt it was 506. I went for thee scans and nothing was seen. My lining has thinned and my RE had me stop all meds. I have had no bleeding or spotting or pain. Now that I’ve stopped meds is there any hope in this being a viable pregnancy? My RE is worried about ectopic but we have seen nothing on the scans to indicate this. I go in for a beta on Monday and I’m wondering if it is over 1000 if we would have any hope? They tell me I am almost 6 weeks pregnant. Thanks for your advice!

    TB

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    The hCG should double every 2 days at this stage.

    Good luck!

    Geoff Sher

  • Lucinda Smith - July 14, 2018 reply

    Dear Dr Sher, I am currently on day 5 of an IVF cycle in Australia. I am aged 44 and my Dr is seeing if I have anything available as a last attempt before we go to donor. I am taking 450 gonal f daily and he has prescribed me 150 luveris daily also along with Cetrotide starting at day 7. I’m aware and read your articles on lh etc and was wondering if you think my protocol above would be unsuccessful? Would you advise no luveris at all or reducing it to 75 per day? Your thoughts would be appreciated.
    Thank you!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

  • Angel - July 14, 2018 reply

    Is 500-1000pg/ml what you think is optimum for e2 prior to a 5 day transfer? Is the an optimum for p4? My failed transfer of 2 ACgH tested embryos which were 5aa and 4ab had the e2 within range but my lining was only 7.4mm. Do you think this was my problem? I only have one embryo left next time so I need to get it right. I was on oral 4mg oestrogen daily plus patches and progesterone suppositories 3 x 200mg prior to transfer and 6 x 200mg after. I am wondering if I should go to injection. I really need the next one to work. Thank you for your time

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    Perhaps we should talk~!

    Geoff Sher
    PH: 800-780-7437

    Angel - July 15, 2018 reply

    Hi Dr
    I’m from England is there a best time to call
    Many thanks

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 15, 2018 reply

    Please call Julie tomorrow.

    Geoff Sher

  • Carla - July 14, 2018 reply

    Hi again Dr.

    My hcg went from 930 to 7207 in 3 days. I am now 13 days past FET. However, progesterone went from 22 to 16.7. Is that ok? I am taking progesterone shots daily and endometrin 3 times daily.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    The progesterone is still OK and that rapid rise in the hCG level could point to a multiple pregnancy or molar degeneration. Only time can tell!

    Geoff Sher

    Carla - July 14, 2018 reply

    What is molar degeneration?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    A molar pregnancy happens when tissue that normally forms the placenta instead becomes a growth, that triggers symptoms of pregnancy. A hydatidiform mole is a benign tumor of the root system (trophoblast) of the embryo which under normal conditions develops into the placenta which connects the baby to the mother.In non-molar pregnancies, an inevitable miscarriage almost invariably presents with flattening or declining blood pregnancy hormone (i.e. hCG) levels. Conversely, with hydatidiform mole the blood hCG concentration is usually elevated continues to rise

    Geoff Sher

    Carla - July 14, 2018

    Thanks but we did icsi. Shouldn’t that prevent it?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 15, 2018

    No! Not necessarily!

    Geoff Sher

    Carla - July 14, 2018 reply

    I transferred 2 5 day blastocyst.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 14, 2018 reply

    Copy!

    Geoff Sher

  • Kristen - July 13, 2018 reply

    I did IVF 6 months ago. I have autoimmune diseases, lowish AMH (1.3 at 34 yrs old) and poor egg quality. After birth control pills, I stimmed for 10 days on 100 units of follistim and 1 vial of menopur and added in orglautran halfway through, plus had a Lupron trigger. I had 19 follicles, 14 eggs, 8 mature, 6 blasts but only 1 PGS normal (hence the egg quality from autoimmune disease).

    Would like to do another round but my dr is suggesting a quick start without birth control pills, doubling my dose to get more eggs and hopefully more PGS normal ones.

    What are your thoughts about skipping birth control and doubling the dose?

    Also I’ve heard HGH can help egg quality … is this something to suggest to my doctor?

    Many thanks.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 13, 2018 reply

    Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview
    I invite you to arrange to have a Skype or an in-person consultation with me to discuss your case in detail. If you are interested, please contact Julie Dahan, at:

    Email: Julied@sherivf.com

    OR

    Phone: 702-533-2691
    800-780-7437

    I also suggest that you access the 4th edition of my book ,”In Vitro Fertilization, the ART of Making Babies”. It is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

  • Cher - July 12, 2018 reply

    Hi,

    My husband and I are using a gestational carrier. We have PGS tested embryos ( I have 13;22 translocation) I have had multiple miscarriages even on our PGS tested embryos. Our dr thought it would be best to use a surrogate since he cannot figure out what is wrong with me. I have also been to Mary Stephenson in Chicago and she cannot figure anything out either. So we moved on to using a gestational carrier. Our carrier completed a cycle in April which resulted in a chemical pregnancy. We did another cycle in May and she was pregnant again and it was another chemical. Her lining the first time was 11, the second time her lining was 9. Each FET cycle she has had low E2 levels. For example, she started her estrace orally on day 1 of her period. Her level was 50.1 on May 11. On May/17 her level was 222, on May 24 her level was 311. The transfer was on May 30. June 4 her E2 was 215, June 7 her E2 was 192. I’m wondering if her E2 levels are too low? The embryos were graded 6BB, and 5BB and PGS normal. Do you think her E2 level is too low? She was on Estrace 2mg twice a day. She takes crinone and PIO injections. Her progesterone levels are 30 or higher. Please let me know any advice. We have 3 frozen embryos left and would like to try again, but afraid to waste the embryos. Thank you for your time!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 12, 2018 reply

    When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
    Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
    • Early pregnancy loss (first trimester)
    • Late pregnancy loss (after the first trimester)
    • Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
    • Early pregnancy losses usually occur sporadically (are not repetitive).
    In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
    Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
    There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
    Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
    Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
    1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
    • Inadequate thickening of the uterine lining
    • Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
    • Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
    • Deficient blood flow to the uterine lining (thin uterine lining).
    • Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
    • Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.
    2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

    IMMUNOLOGIC IMPLANTATION DYSFUNCTION
    Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
    But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
    Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
    Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.

    Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
    However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
    DIAGNOSING THE CAUSE OF RPL
    In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
    Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

    • Karyotyping (chromosome analysis) both prospective parents
    • Assessment of the karyotype of products of conception derived from previous miscarriage specimens
    • Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
    • Hysterosalpingogram (dye X-ray test)
    • Hysteroscopic evaluation of the uterine cavity
    • Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
    • Immunologic testing to include:
    a) Antiphospholipid antibody (APA) panel
    b) Antinuclear antibody (ANA) panel
    c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
    d) Reproductive immunophenotype
    e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
    f) Alloimmune testing of both the male and female partners
    TREATMENT OF RPL
    Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
    Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
    Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.

    Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
    Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
    The Use of IVF in the Treatment of RPL
    In the following circumstances, IVF is the preferred option:
    1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
    2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
    The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
    Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
    There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
    The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Patrick - July 12, 2018 reply

    Hi Dr. Sher,
    My Wife had a spontaneous miscarriage at week 4.5 after succesful IUI and her hCG a week later has returned almost to zero (From a peak of 86). We are considering whether its prudent to try again immediately at her next day 1 or wait one cycle to try another IUI or to try again after that – thoughts? Many thanks

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 12, 2018 reply

    I would rest 1 cycle.

    Geoff Sher

  • Erin - July 12, 2018 reply

    Hi Dr. Sher,

    I have a healthy 13-month-old son (my first pregnancy) and am now experiencing my second miscarriage in five months. The first was a missed miscarriage, diagnosed at 7.5 weeks with a gestational sac measuring 5.5 weeks, a yolk sac, and a visible but tiny embryo. The second, diagnosed yesterday, is a blighted ovum measuring 7.5 weeks, with no visible yolk sac or embryo.

    I had a D&C with the first loss, and am scheduled for my second D&C tomorrow.

    All of my pregnancies were conceived naturally. I both conceived and delivered my son when I was 35. Both miscarried pregnancies were conceived at 36. I turned 37 this week.

    At the ultrasound yesterday, I asked my doctor what he suspected the caused miscarriage was, and he said it’s likely chromosomal abnormalities with both losses. He checked my chart and said I tested negative for blood clot disorders when I was pregnant with my son, and asked if I would be interested in having him draw blood for autoimmune disorder testing. I said yes, and it is worth noting I already have three autoimmune disorders: type 1 diabetes (since age 5), Hashimoto’s disease (since age nine), and Vitiligo (since age 27). My diabetes is under tight control (A1C in the fives during pregnancy, and my OB and endocrinologist do not believe my losses could have been diabetes-related.)

    We are anxious to conceive a healthy pregnancy, aware that fertility is declining at my age. (And, my husband is 43.) I am curious what you would suggest as far as diagnostic testing at this point for someone in my position. I am also curious if I test negative for autoimmune disorders that attack the embryo, and it is suspected these are chromomal abnormality-related losses, whether it would behoove us to jump to IVF with PGS. Finally, I am curious, given my history, how likely you think it is that I carry an autoimmune condition that affects pregnancy.

    A HUGE thank you in advance! We are so anxious for answers and solutions.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 12, 2018 reply

    When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
    Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
    • Early pregnancy loss (first trimester)
    • Late pregnancy loss (after the first trimester)
    • Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
    • Early pregnancy losses usually occur sporadically (are not repetitive).
    In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
    Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
    There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
    Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
    Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
    1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
    • Inadequate thickening of the uterine lining
    • Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
    • Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
    • Deficient blood flow to the uterine lining (thin uterine lining).
    • Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
    • Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.
    2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

    IMMUNOLOGIC IMPLANTATION DYSFUNCTION
    Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
    But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
    Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
    Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.

    Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
    However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
    DIAGNOSING THE CAUSE OF RPL
    In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
    Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

    • Karyotyping (chromosome analysis) both prospective parents
    • Assessment of the karyotype of products of conception derived from previous miscarriage specimens
    • Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
    • Hysterosalpingogram (dye X-ray test)
    • Hysteroscopic evaluation of the uterine cavity
    • Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
    • Immunologic testing to include:
    a) Antiphospholipid antibody (APA) panel
    b) Antinuclear antibody (ANA) panel
    c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
    d) Reproductive immunophenotype
    e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
    f) Alloimmune testing of both the male and female partners
    TREATMENT OF RPL
    Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
    Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
    Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.

    Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
    Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
    The Use of IVF in the Treatment of RPL
    In the following circumstances, IVF is the preferred option:
    1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
    2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
    The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
    Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
    There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
    The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Jo - July 12, 2018 reply

    I am seeking urgent advice on a medication error as it is the middle of the night in the country where I am cycling and no one is awake to give advice.

    I think I’ve made a huge mistake with my cetrotide and trigger. I think I’ve put my whole cycle at risk in fact.

    I’ve been injecting Gonal and Menopur for 11 days and Cetrotide since day 6…my clinic had me start cetrotide a day earlier than planned after a scan in my home country. Because they advised me of that in the lateernoon, I didn’t actually get a chance to do the first cetrotide until evening; hence I carried on doing stims in the morning and cetrotide in the evening.

    So this evening I was set to do my Ovidrel trigger for a Saturday EC…and I realise that the clinic seem to think I’ve been doing all injections together in the morning (this is what they’ve incorrectly recorded on an updated schedule they gave me on Wednesday).

    The problem is that I actually did my cetrotide at my normal time of about 10.30pm, not really thinking about it. Then it gets to 12.30am, time for trigger and this horrible realisation comes over me that they are going to work against each other being too close.

    Have I completely ruined my cycle do you think? I’m now terrified I’ll ovulate before EC since the window between cetrotide and trigger is far too short, only about 2 hours. Or maybe the trigger won’t work properly.

    Thanks for any advice you can offer me. I have asked a Pharmacist friend in the UK who found literature to say it’s probably not a big problem but I feel sick worrying that I’ve messed the whole thing up.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 12, 2018 reply

    AS long as the trigger is done +/-36h prior to ER you should be fine.

    Good luck!

    Geoff Sher

  • Niamh Tierney - July 12, 2018 reply

    Hi Dr. Sher,
    I hope you are well. I will be 42 in August. I hope to conceive with donor sperm. I’ve had all tests done, all bloods, TSH, prolactin etc are well within normal range. My Amh is 18.93. Both my Karyotype test was clear and also zip test (for auto immune). I’ve had five failed IUIs, three of which resulted in biochemical pregnancies and one failed IVF. I have moved to another clinic in Dublin and will cycle at end of July. My question is should I do PGS or not? My gut feeling is that I should not do it. Can you advise me please? Thank you.
    Kind regards,
    Niamh.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 12, 2018 reply

    I would definitely suggest PGS!

    The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Nick - July 12, 2018 reply

    Hi dr.
    I 35 year old..in last 9 year i had 6 missed abortions.
    Many teste are done but don’t get significant outcome .
    All MC in 6- 7 weeks.
    Me and my husband share HLA matching DRB3* (DR52). It could be one reason of MC. Dr suggest next time doing IvF with pgd..and will give ivig also.
    Please dr. Help me . I am so depressed.
    Thank you

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 12, 2018 reply

    In the absence of NK cell activation by the K-562 target cell test and/or uterine cytokine analysis, HLA matching will not explain your losse. You need a thorough immunologic assessment for both autoimmune and alloimmune factors.

    Unless tests for immunologic implantation dysfunction (IID) are performed correctly and conducted by a one of the few reliable reproductive immunology reference laboratory in the United States, treatment will likely be unsuccessful. . In this regard it is most important that the right tests be ordered and that these be performed by a competent laboratory. There are in my opinion only a handful of reliable Reproductive Immunology Laboratories in the world and most are in the U.S.A. Also, it is my opinion that far too often, testing is inappropriate with the many redundant and incorrect tests being requested from and conducted by suboptimal laboratories. Finally for treatment to have the best chance of being successful, it is vital that the underlying type of IID (autoimmune IID versus alloimmune) be identified correctly and that the type, dosage, concentration and timing of treatments be carefully devised and implemented.
    Who Should Undergo IID testing?
    When it comes to who should be evaluated, the following conditions should in always raise a suspicion of an underlying IID, and trigger prompt testing:
    • A diagnosis of endometriosis or the existence of symptoms suggestive of endometriosis (heavy/painful menstruation and pain with ovulation or with deep penetration during intercourse) I would however emphasize that a definitive diagnosis of endometriosis requires visualization of the lesions at laparoscopy or laparotomy)
    • A personal or family history of autoimmune disease such as hyper/hypothyroidism (as those with elevated or depressed TSH blood levels, regardless of thyroid hormonal dysfunction), Lupus erythematosus, Rheumatoid arthritis, dermatomyositis, scleroderma etc.)
    • “Unexplained” infertility
    • Recurrent pregnancy loss (RPL)
    • A history of having miscarried a conceptus that, upon testing of products of conception, was found to have a normal numerical chromosomal configuration (euploid).
    • Unexplained IVF failure
    • “Unexplained” intrauterine growth retardation due to placental insufficiency or late pregnancy loss of a chromosomally normal baby
    What Parameters should be tested?
    In my opinion, too many Reproductive Immunologists unnecessarily unload a barrage of costly IID tests on unsuspecting patients. In most cases the initial test should be for NK cell activation, and only if this is positive, is it necessary to expand the testing.
    The parameters that require measurement include:
    o For Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or uterine cytokine measurement. As far as the ideal environment for performing such tests, it is important to recognize that currently there are only about 5 or 6, Reproductive Immunology Reference Laboratories in the U.S capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity (in my opinion).
    o For Alloimmune implantation Dysfunction: While alloimmune Implantation usually presents with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive started having repeated miscarriages it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in IID when there is concomitant NK/CTL activation (see elsewhere on this blog).
    How should results be interpreted?
    Central to making a diagnosis of an immunologic implantation dysfunction is the appropriate interpretation of natural killer cell activity (NKa) .In this regard, one of the commonest and most serious errors, is to regard the blood concentration of natural killer cells as being significant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. Then there is the interpretation of reported results. The most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In my opinion, trying to interpret the effect of adding IVIG or Intralipid to the sample in order assess whether and to what degree the use of these products would have a therapeutic benefit is seriously flawed and of little benefit. Clinically relevant NK cell deactivation can only be significantly effected in vivo and takes more than a week following infusion to occur. Thus what happens in the laboratory by adding these products to the sample prior to K-562 target cell testing is in my opinion likely irrelevant.
    There exists a pervasive but blatant misconception on the part of many, that the addition of Intralipid (IL) /immunoglobulin-G IVIG) can have an immediate down-regulatory effect on NK cell activity. This has established a demand that Reproductive Immunology Reference Laboratories report on NK cell activity before and following exposure to IVIG and/or IL. However, the fact is that activated “functional” NK cells (NKa) cannot be deactivated in the laboratory. Effective down-regulation of activated NK cells can only be adequately accomplished if their activated “progenitor/parental” NK cells are first down-regulated. Thereupon once these down-regulated “precursor” NK cells are exposed to progesterone, they will begin spawning normal and functional NK cells, which takes about 10-14 days. It follows that to assess for a therapeutic response to IVIG/IL therapy would require that the patient first be treated (10-14 days prior to embryo transfer) and thereupon, about 2 weeks later, be retested. While at 1st glance this might seem to be a reasonable approach, in reality it would be of little clinical benefit because even if blood were to be drawn 10 -14 days after IL/IVIG treatment it would require an additional 10 days to receive results from the laboratory, by which time it would be far too late to be of practical advantage.
    Neither IVIG nor IL is capable of significantly suppressing already activated “functional NK cells”. For this to happen, the IL/IVIG would have to down-regulate progenitor (parent) NK cell” activity. Thus, it should be infused 10-14 several prior to ovulation or progesterone administration so that the down-regulated “progenitor/precursor” NK cells” can propagate a sufficient number of normally regulated “functional NK cell” to be present at the implantation site 7 days later. In addition, to be effective, IL/IVIG therapy needs to be combined with steroid (dexamethasone/prednisone/prednisolone) therapy to down-regulates (often) concomitantly activated T-cells.
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

    Addendum!
    When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
    Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
    • Early pregnancy loss (first trimester)
    • Late pregnancy loss (after the first trimester)
    • Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
    • Early pregnancy losses usually occur sporadically (are not repetitive).
    In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
    Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
    There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
    Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
    Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
    1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
    • Inadequate thickening of the uterine lining
    • Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
    • Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
    • Deficient blood flow to the uterine lining (thin uterine lining).
    • Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
    • Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.
    2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

    IMMUNOLOGIC IMPLANTATION DYSFUNCTION
    Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
    But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
    Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
    Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.

    Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
    However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
    DIAGNOSING THE CAUSE OF RPL
    In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
    Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

    • Karyotyping (chromosome analysis) both prospective parents
    • Assessment of the karyotype of products of conception derived from previous miscarriage specimens
    • Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
    • Hysterosalpingogram (dye X-ray test)
    • Hysteroscopic evaluation of the uterine cavity
    • Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
    • Immunologic testing to include:
    a) Antiphospholipid antibody (APA) panel
    b) Antinuclear antibody (ANA) panel
    c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
    d) Reproductive immunophenotype
    e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
    f) Alloimmune testing of both the male and female partners
    TREATMENT OF RPL
    Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
    Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
    Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.

    Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
    Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
    The Use of IVF in the Treatment of RPL
    In the following circumstances, IVF is the preferred option:
    1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
    2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
    The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
    Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
    There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
    The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

  • LM - July 12, 2018 reply

    Hi Dr Sher-

    I am 37 years old and have had 4 miscarriages (including last 2 being chemicals) after a healthy pregnancy a few years ago. I have been diagnosed with DOR as well as a partial dq alpha match and borderline activated nk cells (13%). I was waiting to start an IVF cycle and ended up conceiving naturally. First beta was 75 with progesterone only 6.8. I was immediately put on progesterone pills and my next beta that was 72 hours later had risen to 460 and progesterone was 17.6. Only at that point did I start 20mg prednisone and receive intralipids. My question is that it would seem to be too little to late at this point since that would have needed to be started prior to ovulation right?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 12, 2018 reply

    The DQa match is only relevant if you in addition have activated uterine NK cells as measured by the K-562 target cell test and/or uterine endometrial biopsy showing excessive TH!-cytokine activity. Otherwise it does not require attention, in my opinion.

    Good luck!

    Geoff Sher

  • Kris - July 11, 2018 reply

    I’m thinking of doing natural ivfs every month. Is it safe to be sedated every month though and is the actual process of egg retrieval safe to do every month?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    Mini-IVF is a procedure that involves ovarian stimulation using low dosage medications (often oral drugs like clomiphene and letrozole) under the premise that it is a “safer” and less expensive than conventional gonadotropin stimulation regimes while yielding comparable success. …….. Nothing could be further from the truth. The fact is that success rates per fresh mini-IVF cycle ranges between 10% and 12%s (i.e., about one third of that which reported national average for conventional IVF performed on women under 39y of age) ). And when it comes to older women and those with diminished ovarian reserve (DOR), the success rate with mini-IVF is usually much lower still.
    There can be little doubt that aside from a woman’s age, the method used for ovarian stimulation represents the most important determinant of egg/embryo quality and thus of IVF outcome. There is no single stimulation protocol that is suitable for all IVF patients. It must be individualized…. especially when it comes to women who, regardless of their age have diminished ovarian reserve (DOR) and for women over >40y of age. The reason for this is that in such cases, the pituitary gland often over-produces LH which in turn causes the ovarian stroma/theca (connective tissue) to thicken (stromal hyperplasia/hyperthecosis) and over-produce male hormones (mainly testosterone). This in turn adversely influences egg and follicle growth, resulting in poor egg/embryo “competency” and compromised IVF outcome.
    So let us examine the validity of the claims made in support of mini-IVF:

    1. Milder stimulation using oral agents such as clomiphene, letrozole (alone or in combination with low dosage gonadotropins (Follistim/Gonal-F/Puregon/Menopur) reduces stress on the ovaries and overall risk associated with IVF. This argument while perhaps having some merit when applied to mini-IVF conducted in younger women who also have normal ovarian reserve, does not hold water for older women and those with DOR who (s stated above) often already have excessive LH-induced ovarian testosterone production. Furthermore, addition of clomiphene and letrozole by further increasing pituitary LH (and thus ovarian testosterone) only serves to add “fuel to the fire” in such cases and Menopur which contains both LH and hCG ( that both have similar effects on ovarian testosterone production), if administered in large amounts (>75U per day) can also do harm in my opionion.

    2. Women with DOR will respond better to “milder stimulation” and egg quality will so be enhanced. This assertion borders on the ridiculous. It is like saying that applying less force to a heavier object will increase the likelihood of moving it”. That is simply not how FSH stimulates follicle development. You see…the cell membranes that envelop the follicular granulosa cells that line the inside surface of ovarian follicles have on their surfaces, a finite number of FSH receptors. FSH molecules attach to these receptors and mediate intracellular events that lead to granulosa cell proliferation with production of estradiol and the concurrent development of the egg (oogenesis) that is attached to the inner wall of the follicle. Once all the FSH receptors on the cell membranes are saturated, any residual FSH is discarded. This is why, when it comes to older women and women with DOR whose granulose cell membranes harbor fewer FSH receptors, it is virtually impossible to overstimulate them. Excessive FSH will simply be rejected and discarded.

    3. Use of fewer drugs translates into lower cost. This would be true, were it not for the fact that success rates with mini-IVF across the board are much lower than with conventional ovarian stimulation. More important is the fact that the cost of IVF should be expressed in terms of “the cost of having a baby” rather than “cost per cycle of treatment”. When this is taken into account the cost associated with mini-IVF will b be significantly higher than conventional IVF. Then there is the additional emotional cost associated with a much higher IVF failure rate with mini-IVF.
    4. Mini-IVF is less technology driven, less stressful and easier to execute. This assertion is in my opinion also without merit. Aside from reduced cost of medications, the same monitoring and laboratory procedures are needed for mini-IVF as with conventional treatment.

    What is the best approach? When it comes to older women and those with DOR, it is in my opinion preferable to use a long pituitary down-regulation protocol with conversion from an I.M agonist (e.g. Lupron or Buserelin) to an antagonist such as Cetrotide/Orgalutron or Ganirelix (the agonist/antagonist conversion protocol) augmented with human growth hormone (HGH) and/or estrogen priming and combing this “embryo banking” over several cycles. In such cases preimplantation genetic screening (PGS) can be incorporated to help select the most “competent” embryos for transfer.

    What about younger women with normal or increased ovarian reserve? If mini-IVF has any role at all, it could be in young women who have normal or increased ovarian reserve. I do not o not advocate aggressively stimulating the ovaries of younger women who have normal or increased ovarian reserve (as assessed by basal FSH, AMH and estradiol) simply to try and access more eggs. In fact, such an approach is neither safe nor acceptable. In such women it is often wiser to use lower dosage stimulation to try and prevent the development of severe ovarian hyperstimulation syndrome (OHSS) which aside from putting the woman at severe risk of (sometimes) life-endangering complications, can also compromise egg/embryo quality. However, it is my fervent belief that in such women, the preferred approach to ovarian stimulation is through the use of low dosage FSHr-dominant gonadotropins (rather than oral agents such as clomiphene or letrozole and/or high dosage Menopur). This approach is referred to as Micro-IVF.

    If you are interested in my advice or medical services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com. You can also apply online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Saima Ali - July 11, 2018 reply

    hi doctor, so far i went through 2 IUIs, 5 retrievals, and 4 fresh transfer and 3 frozen transfers and all unsuccessful. Now i am hopeless. the first ever frozen transfer actually got positive to first and second HCG beta test but got negative after. 3 specialist i have been through and no one clearly able to say why this is happening. first we diagnosed with low sperm count than after we are just keep going through this again and again. Now my doctor thinks it may be just quality of egg but on the measuring scale my embryos always rated good not even questionable. Now i have two more frozen embryos but my guess is i have some problem with implantation. I am in chicago and honestly in past ten years whatever my savings are, all gone. now i am at the point that i have to sell my car too. so at this point i am completely hopeless and think i should give up. If you think about any test needed which can help i will get it done. i wish i should have enough money so i can do consultation with you and may be you can find out some issue which needs to be taken care of to get success. Please let me know if you can help me in any ways.
    Thank you

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Charlie - July 11, 2018 reply

    Hi,
    I had my egg retrieval yesterday and they retrieved around 13 eggs and today I received a call from my nurse that only 1 egg got fertilized out of 9 mature eggs. Any help would be greatly appreciated. How much is my chance for a successful pregnancy

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    This does not sound very promising.

    f you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Carla - July 11, 2018 reply

    Hi again DR.

    As you know my hcg at 10dp5d FET was 930. I need to do another test at 14 days past. What should my level be then?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    >3,500MIU/ml.

    Good luck!

    Geoff Sher

  • Stella Villion - July 11, 2018 reply

    Dear Dr Sher

    My gyneacologist prescribed clomid – I am 36. I took two cycles and then decided to stop as it lengthened my last cycle to over 50 days. I am now on the first cycle after clomid, on day 30 and no menstruation in sight. How long on average to reverse this? Also, I since went to a fertility specialist who diagnosed diminished ovarian reserve. I used to have 27 day cycles so seems like the clomid has done more damage than helping me. Please, any advice to support normal cycles and ovarian health? Should I consider IVF immediately? Kind Regards

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    Respectfully, I do not agree with using clomiphene in women with DOR.

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Lydia - July 11, 2018 reply

    Hi Dr,

    I am 33 year old woman with unexplained fertility undergoing fertility treatments for the past year (3 failed iuis and 2 rounds of IVF, starting my third IVF round in Sept).

    The first IVF protocol in November was 1 vial menopur and 150 follistim with a pregnal trigger. Resulted in 8 eggs, 7 mature, 6 fertilized, 4 made to 5 day blast.

    First FET was successful however resulted in miscarriage at 7 weeks. The next FET we transferred two embryos that failed to implant (the other embryo did not make the thaw).

    Started a new round of IVF in June (now protocol was 4 vials of menopur, 150 follistim, pregnal and lupron trigger mix). Retrieved 8 eggs, all mature and fertilized but then we were down to 2 blasts by day 5. Sent for testing and we have one mosaic and one abnormal.

    I’m confused as to what is happening between the various protocols and their varying results, why I am not retrieving more eggs and getting more blasts (Dr says I have a good egg reserve), if I should transfer my mosaic embryo or bank it as a reserve and what changes to my protocol can be made to ensure a more successful round to result in healthy baby.

    Thank you.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Denise - July 11, 2018 reply

    Dr. Sher,

    I had a endo biopsy in May that showed mild endometritis (likely cause is retained placenta, from D&E, which was removed). I took 10 days of doxy 100mg but apparently the endometritis did not go away.

    My biopsy in June shows “focal occasional positive cells identified, suggestive of chronic mild endometritis.”
    My doctor is prescribing azythromycin (z-pack x 5 days) this time.

    My doctor says that the significance of asymptomatic endometritis is unclear in Fertility literature and she feels okay for me to proceed even with this condition, but I have read it is bad for implantation / pregnancy. I don’t know why the doxy did not get rid of it but would feel better with it gone.

    Which antibiotics have you used to successfully get rid of chronic mild endometritis?

    If the endometritis does not go away, would you proceed with FET as long as the lining is thick and trilaminar?

    Thank you for your help!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    I am not a believer of chronic endometritis with the exception of tuberculosis which is extremely rare in 1st world countries. It is more commonly found in Asia. Furthermore, such a diagnosis requires the detection of plasma cells in the biopsy specimen. In my opinion, with the exception of tuberculous endometrititis, treatment is rarely needed.

    Geoff Sher

    Denise - July 11, 2018 reply

    Yes, a CD138 immunostain for plasma cells was done and “focal occasional positive cells are identified, suggestive of mild chronic endometritis.”

    How would you treat this endometritis?
    If you would not treat it and proceed with transfer, can you help me to understand why inflammation/infection of the lining would not hurt implantation or increase chance of miscarriage? I assumed a healthy lining was key.
    Thank you!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    They need to do PCR to test for tuberculous endometritis first. That would requiore specific and targeted treatment over many months.

    Most inflammation of the endometrium is purged with menstruation.

    Geoff Sher

  • Christie Davies - July 10, 2018 reply

    Hi , me and my husband have just had PGD For gender selection , we have conceived 2 perfectly healthy boys naturally and wanted to complete our family with a daughter . So it started with a follicle scan in the uk , which showed I had 14 follicles , my stimulation protocol and meds got sent over , I was on Menogon 225 & orgalutran 0.25 . I got to clinic and I was told I had 11 mature eggs and my womb lining was 12mm . So all seemed so perfect . My eggs were fertilised, only 8 fertilised out of 11 , and only 6 made it to PGD testing . Only 1 of my embryos were normal , all of my other embryos had Monosomy x , Monosomy 18 , Trisomy x , Trisomy 13 , chaotic , & nuclear blastomer . I was so shocked , I am 26 & my husband is 28 we are both healthy and fertile . And we had no good news . Our one healthy embryo grade aa got put back and has yesterday resulted in a chemical pregnancy . Could there be any other reason for this ? I can’t see me and my husband carrying these genetic or chromosome abnormalities . I want our daughter so bad and I don’t know what our next steps could be ?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    Your autosomally monosomic and trisomic embryos might not ne “incompetent”. They could ne “mosaic”…

    Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or preimplantation embryo development, and represents a major cause of early pregnancy loss. About a decade ago, I and an associate, Levent Keskintepe PhD were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3 fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
    Most IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, there is now growing evidence to suggest that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “autocorrection”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases occurring within our IVF network. So clearly , summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring.
    Thus by discarding aneuploid embryos the possibility exists that we could be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.
    The basis for such embryo “autocorrection” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.” As stated, some mosaic embryos will In the process of subsequent cell replication convert to the normal euploid state (i.e. autocorrect)
    It is against this background, that an ever increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:
    1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “autocorrection”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
    2. “Mitotic aneuploidy” occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically euploid early embryo mutate and become aneuploid. This is referred to as mosaicism. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will be “competent” and capable of propagating a normal conceptus.
    Since some mitotically aneuploid (“mosaic”) embryos can, and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to differentiate between these two varieties of aneuploidy would be of considerable clinical value. And would provide a strong argument in favor of preserving certain aneuploid embryos for future dispensation.
    Aneuploidy, involves the addition (trisomy) or subtraction (monosomy) of one chromosome in a given pair. As previously stated, some aneuploidies are meiotic in origin while others are mitotic “mosaics”. Certain aneuploidies involve only a single, chromosome pair (simple aneuploidy) while others involve more than a single pair (i.e. complex aneuploidy). Aside from monosomy involving absence of the y-sex chromosome (i.e. XO) which can resulting in a live birth (Turner syndrome) all monosomies involving autosomes (non-sex chromosomes) are lethal and will not result in viable offspring). Some autosomal meiotic aneuploidies, especially trisomies 13, 18, 21, can progress to viable, but severely chromosomally defective babies. All other meiotic autosomal trisomies will almost invariably, either not attach to the uterine lining or upon attachment, will soon be rejected. All forms of meiotic aneuploidy are irreversible while mitotic aneuploidy (“mosaicism) often autocorrects in the uterus. Most complex aneuploidies are meiotic in origin and will almost invariably fail to propagate viable pregnancies.
    There is presently no practical test that can reliable differentiate between meiotic and mitotic aneuploidy. Notwithstanding this, the fact that some “mosaic” embryos can autocorrect in the uterus, makes a strong argument in favor of transferring aneuploid of embryos in the hope that the one(s) transferred might be “mosaic” and might propagate viable healthy pregnancies. On the other hand, it is the fear that embryo aneuploidy might result in a chromosomally abnormal baby that has led many IVF physicians to strongly oppose the transfer of aneuploid embryos to the uterus.
    Certain meiotic aneuploid trisomy embryos (e.g. trisomies 13, 18, & 21) can and sometimes do, result in aneuploid concepti. Thus, in my opinion, unless the woman/couple receiving such embryos is willing to commit to terminating a resulting pregnancy found through amniocentesis or chorionic villus sampling (CVS) to be so affected, she/they are probably best advised not to transfer such embryos. Other autosomal trisomy embryos will hardly ever produce viable euploid concepti and can thus, in my opinion be transferred in the hope that auto correction will occur in-utero. However, in all cases, and amniocentesis or CVS should be performed to make certain that the baby is euploid. Conversely, no autosomal monosomy embryos are believed to be capable of resulting in viable pregnancies, thereby making the transfer of autosomal monosomy embryos, in the hope that they are “mosaic”, a far less risky proposition. Needless to say, if such action is being contemplated in any such cases, it is absolutely essential to make full disclosure to the patient (s) , and to insure the completion of a detailed informed consent agreement which would include a commitment by the patient (s) to undergo prenatal genetic testing (amniocentesis/CVS) aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.

    Good luck!

    Geoff Sher

  • Candace Wason - July 10, 2018 reply

    Dr. Sher,
    I was your patient back in 1997 and conceived twins. I know that I had implantation dysfunction. At that time you placed me on Heparin 5,000 U bid, a baby ASA, glucocorticoids and IVIG.
    Before conceiving in’97 through you, I had a premature son after 7 years of infertility treatments. I had many failed IUIs, 7 unsuccessful GIFTs, 1 failed ZIFT and possibly one chemical pregnancy. I eventually conceived my son though IUI and a daily baby ASA. After positive cardiac activity, I had a massive bleeding episode at 6 weeks and then went into preterm labor at 23 weeks.
    Now for the tricky part. Prior to my twin’s birth in 97′ through your clinic, I had a trigeminal neuralgia affecting all of my teeth with intermittent excruciating episodes of tooth pain. The neuralgia was possibly triggered by a root canal. During the course of your treatment with IVIG, glucocorticoids, heparin and ASA 81 mg, the neuralgia went away and never came back. I think the glucocorticoids and IVIG were the reason it went away.
    In January of 2017, I had a face lift and now once again have a trigeminal neuralgia that is affecting my ears bilaterally. The neuralgia symptoms started one day post op and may be attributed to the movement of nerves and/or nerve compression. This excruciating pain is lancinating and burning. My neurologist thinks that the cause is autoimmune and wants to treat me with IVIG and steroids. What blood tests should she order and what is your recommendation for treatment? She wants to find a reason to give me IVIG.
    Prednisone 2o mg qd, started 4/17 helped initially, however, it is not enough. I had a work up by a Rheumatologist for a systemic disorder that came back negative, with the exception of some positive ANA antibodies. I am desperate for treatment. Should my neurologist test for those same antibodies that you did in ’97? My records are not available. What antibodies should she test for? Treatment wise, what do you recommend in terms of how many IVIG infusions, dose of glucocorticoids and any other medications. I am desperate and have been to a least 12 specialists. This neuralgia has been going on for 19 months. Lyrica helps with the pain, however, the side effects are horrible.
    Thank you so much for your advice!
    Candace

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    Hi Candace,

    I am afraid I cannot help here as I have no experience when it comes to trigeminal neuralgia and a basis for autoimmune disease in this settimg.

    Sorry…good luck!

    Geoff Sher

  • Lauren - July 10, 2018 reply

    I have just finished my second round of ivf. My first attempt ended in a chemical. My second I transferred 2 and sadly just miscarried at 6 weeks. I have low amh of .849 I am soon to be 37. I have one available frozen non tested embryo. My question is how many ivf attempts should I do. What’s the average of cycles to get a successful pregnancy. I would like to think I have some good eggs left. I dont know if I should go ahead with the frozen transfer or try to get my insurance to cover another egg retrieval. What do u think? Thanks for your help

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    I would first consider the following before making the decision of whether or not to do the FET before doing another ER.

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Kara - July 10, 2018 reply

    Poor fertilization with ICSI X 6 cycles. Any thoughts on assisted oocyte activation? If so, where can I get this procedure? In in CT.

    I’m 38 with mild DOR

    0-20% fertil with ICSI on average occurring in context of severe Sperm morphology issues (primary abnormality with globus head in most but not all Sperm). My suspicion is possible issue with inability to activate oocyte. (Per embryologist most eggs, aside from a few with grainy cytoplasm looked normal prior to fertilization). I wonder if this would help us?

    Many thanks,
    Kara

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).

    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).

    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.

    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.

    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.

    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.

    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH

    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.

    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.

    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.

    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com. You can also apply online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Amelia - July 10, 2018 reply

    Dr Sher, what are you thoughts on doing back to back frozen embryo transfers? I am 31 and have 9 blastocysts frozen. I have DQ alpha match and raised NK cells. I have done LIT and will do intralipids and dexamethasone. Thanks.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    No problem Amelia!

    Good luck!

    Geoff Sher

    Amelia - July 11, 2018 reply

    Thank you !!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 11, 2018 reply

    You are very welcome

    Geoff Sher

  • Carla - July 10, 2018 reply

    Hi Dr Sher,

    My first beta came back at 8dp5day FET at 352. 2 days later it is 942. Would you say this is doubling appropriately?

    Carla - July 10, 2018 reply

    Progesterone was 22 2 days ago and it is still 22. Is that ok?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    Still OK!

    Geoff Sher

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    Looking quite good Carla!

    Good luck.

    Geoff Sher

    Carla - July 10, 2018 reply

    Thanks Dr. I am traveling 14 hour flight on Thursday. Do you think it is fine to travel?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    I do not see a problem but discuss with your RE first.

    Geoff Sher

  • aviva - July 10, 2018 reply

    Hi. Doctor forgot to give me endometrin a few days before embryo transfer (frozen). transfer was 17 days after period (period being day one). what are the chances of success? started taking day of transfer only. I’m going crazy…they were my best eggs and my last. thx

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    If that was the only form of progesterone administered…it could be a problem, I am afraid!

    Good luck!

    Geoff Sher

    aviva - July 10, 2018 reply

    I’m sorry but your response isn’t so clear. does it mean it was a waste and there is no hope or is there a tiny window of hope?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    There is always hope!

    Geoff Sher

  • Mel - July 9, 2018 reply

    Thank you so much for your previous answer Dr Sher. I have autoimmune ID because of endo, everything else is normal with myself and my husband.

    Even though I have blocked tubes bc of endo I ended up conceiving naturally while waiting for a FET. I was put on steroids and IL immediately when I found out I was pregnant (4 weeks). I had a scan at 5 weeks to ensure pregnancy wasn’t ectopic.

    However, today at the second scan (I’m supposed to be 8w5d today) I was told the fetus measured 5 days behind and the GS 7 days behind, though the heartbeat is 175. Dr didn’t go into any other details and was brief and left. I’m scheduled for another scan next week.

    I’ve had 4 miscarriages already and want to know if in your opinion I should be preparing for another one given today’s info. What are the chances that this could turn out well? I’m 33yo by the way.

    Thank you

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    It would be difficult to predict without another US a week from now. Please post the findings then and re-pose this question.

    Geoff Sher

    Mel - July 9, 2018 reply

    Ok, I will. Thank you

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    Copy and G-d bless!

    Geoff Sher

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    Copy!

    Geoff Sher

  • Jane - July 9, 2018 reply

    Hi Dr. Sher,
    I have completed 2 full cycles of IVF (first at age 23 and second at 24). Each time only resulting in a single quality embryo that did not result in pregnancy after FET’s. I have begun a third round (age 26) also resulting in a single embryo (quality unknown). I have severe endometriosis and have undergone 3 laparoscopic surgeries, and have been told I have DOR and low quality. All stimming approaches have been pretty much the same, and I’m wondering if there is any point in continuing or if I should move on.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    When women with infertility due to endometriosis seek treatment, they are all too often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this blog!
    Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.
    So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.
    So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:
    1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
    2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa). This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
    3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
    4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), iIncreasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy. The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

    I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.

    IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice. I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
    • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
    • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
    • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
    • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
    • Treating Ovarian Endometriomas with Sclerotherapy.
    • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options.
    • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
    • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s &
    • Induction of Ovulation With Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its ue
    • Clomiphene Induction of Ovulation: Its Use and Misuse!

    If you are interested in my advice or medical services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com. You can also apply online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

    Jane - July 9, 2018 reply

    Should I continue trying IVF after multiple failed rounds knowing that I have low quality eggs and diminished ovarian reserve?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    I would need to know a great deal more about your case to respond authoritatively to this question.

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Sara - July 9, 2018 reply

    Hi dr
    I did fsh test on day 4 and my fsh was 21. Ostradiol is 0,13 nmol/l and lh 5 u/l. Is my fsh high i am 32 y/o. I did this test right after cancelled ivf. Can ivf influnce fsh.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    Unlikely that it will cause the high FSH. You should have an AMH test done (anytime in the cycle). This will help determine your ovarian reserve more reliably.

    Geoff Sher

  • Raffaella - July 9, 2018 reply

    Hello Dr sher , how would you deal with adenomysis .. I did 4 fai;led ivf treatments

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    We should talk: In my opinion, unless it is associated with a poor endometrial lining response to estrogen, it rarely explains repeated IVF failures.

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Mel - July 9, 2018 reply

    Hello Dr Sher,

    I posted this question yesterday but it seems it got deleted and I never got an answer:

    1) are there cases of autoimmune ID where you recommend steroids past the 10th week, and if so why?

    2) are there cases of autoimmune ID where you recommend IL past confirmation of pregnancy, and if so why?

    3) what’s your opinion about high dose oral fish oil replacing IL?

    4) in alloinmune ID why are steroids stopped at 10 weeks if IL is continued trough the 24th week?

    Thank you

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    1) are there cases of autoimmune ID where you recommend steroids past the 10th week, and if so why?

    A: no

    2) are there cases of autoimmune ID where you recommend IL past confirmation of pregnancy, and if so why?

    A: No!

    3) what’s your opinion about high dose oral fish oil replacing IL?

    A: No evidence of a beneficial effect.

    4) in alloinmune ID why are steroids stopped at 10 weeks if IL is continued trough the 24th week?

    A: Some of the risks of steroids to mother and baby build over time. In addition, I think the most important benefit is in the 1st trimester.

    Geoff Sher

  • Marius - July 9, 2018 reply

    Hi Dr. Sher,
    After the hyper stimulation the ovaries produced around 23 eggs. Those eggs are coming from the natural born reserve? Meaning that each hyper stimulation is depleting the reserve?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    True, but given your response, I would not be over-concerned about your egg population becoming depleted in the near future.

    Geoff Sher

    Marius - July 10, 2018 reply

    Thank you very much for your answer. The concern for us that my wife has 42 years…

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 10, 2018 reply

    Understood.

    The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Elmure Briffa - July 9, 2018 reply

    Hi Dr,
    We are a couple with an 8 year old boy conceived through our third IUI attempt. We’ve been on the path to have a sibling for our boy for the last 7 years. In this time we’ve done over 20 cycles of IVF fresh and frozen. One resulted in a missed miscarriage at 13 weeks. I had a currette done for this. Another was an ectopic pregnancy in liver a few years after this.
    Since my miscarriage 5 years ago, I think I’ve only had one chemical pregnancy in that time. The rest have all resulted in implantation failure. Since the miscarriage I repeatedly told my drs that my periods had not returned to normal and suspected something was wrong. After a scan, one dr found some scaring which was then cleared. My lining consistently remained thin since and would only get past 7 to 8mm only with FSH injections along with estrogen. Without any medication, my lining doesn’t get thicker than 6mm.
    In your opinion, do you think there has been irreparable damage done to my endometrium following the currette? I’ve had embryos PGD tested which came back normal. We transferred 2 at different times and neither had a hint of implantation.
    We’ve recently done a donor egg cycle with 2 blastocysts and still implantation failure.
    I’ve been treated for natural killer cells and laiden factor V while doing IVF and still nothing.
    Could there be damage done to my basal layer even though with medication my lining gets past 8mm? I’m at my wits end trying to find answers and beyond despair.
    I look forward to hearing your opinion
    Regards
    Elle

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    Yes! It is possible that this is a lining issue. However, I suggest a full evaluation for autoimmune and alloimmune implantation dysfunction also be assessed.

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Mel - July 9, 2018 reply

    Hi dr Sher
    Thank you for your reply. Very helpful.
    My lab test for hematology showed hyperaggregation. If my ACA IgG & IgM tests were negative then why i had hyperaggregation? Can you interpret the lab result in detail? I’m a bit confused on this. Also based on my result ACA IgG: <2(negative), IgM:2( negative) should i consider further APS( antiphospolipid syndrome) test to make sure there is no blood clotting disorder in my body? What will you recommend?

    Regard,
    Mel

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 9, 2018 reply

    I have no clue as to what is meant here but I can tell you that anticardilolipin antibodies are the least important of antiphospholipid antibodies when it comes to immunologic implantation dysfunction (IID) so I personally would not be concerned.If IID is a concern I suggest a full panel analysis of all 21 isotopes of IgA, AgG and IgM antiphospholipid antibodies, a panel of anti-thyroid antibodies , an immunophenotype and natural killer cell activity (*by the K-562 target cell test (and/or uterine cytokines) be measured.

    Good luck!

    Geoff Sher.

  • Kate - July 8, 2018 reply

    Hi Dr. Sher,

    First off thank you for your advice on this blog! Your comments have been very informing and helpful!

    I have had 3 failed ivf cycles where none of them make it to a blast but instead all fragment. I am 31, thin pcos, mild endo (now low DOR). Husband with good SA but slightly low t, on clomid currently. We have a 3 year old daughter from our 1st iui. Ever since trying to conceive #2, we have had no luck. All 3 ivf cycles I was on the antagonist protocol with menopur or combo menopur and follistim. This time I will try the long Lupron protocol with stimming on menopur225 and follistim 225 while continuing Lupron. What are your thoughts on the new upcoming protocol/ dosing? (My first 2 cycles I did menopur 375 daily; third cycle I did follistim 300, menopur 150).

    I’m also considering adding hgh. Would you agree it may be worth trying it even though I’m not DOR?

    Kate - July 8, 2018 reply

    Correction…I do NOT have DOR

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 8, 2018 reply

    Copy!

    Geoff Sher

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 8, 2018 reply

    Here is the protocol I advise for women, <40Y who have adequate ovarian reserve.
    My advice is to use a long pituitary down regulation protocol starting on a BCP, and overlapping it with Lupron 10U daily for three (3) days and then stopping the BCP but continuing on Lupron 10u daily (in my opinion 20U daily is too much) and await a period (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst and simultaneously, the Lupron dosage is reduced to 5U daily to be continued until the hCG (10,000u) trigger. An FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is started with the period for 2 days and then the gonadotropin dosage is reduced and a small amount of menotropin (Menopur---no more than 75U daily) is added. This is continued until US and blood estradiol levels indicate that the hCG trigger be given, whereupon an ER is done 36h later. I personally would advise against using Lupron in “flare protocol” arrangement (where the Lupron commences with the onset of gonadotropin administration.
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
    • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
    • A personalized, stepwise approach to IVF
    • “Triggering” Egg Maturation in IVF: Comparing urine-derived hCG, Recombinant DNA-hCG and GnRH-agonist:
    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Melanie - July 8, 2018 reply

    Hi dr Sher
    I had miscarriage at 8 weeks two years ago and chemical pregnancy last year. Turned out i had chromosome problem(45Xx(3),46Xx(27)).I started my ivf with PGS cycle last March with minimal stimulation yielded 2 blastocysts. Both of them sent for PGS. Result: one normal, the other one is monosomy chromosome 7(30%). I just finished my hysteroscopy three weeks ago( dr found one small myoma took it and mild infection in uterus). Dr gave antibiotics and progynova as well as duphaston for 10 days. My ACA test IgG <2 GPL U/ml( metode: ELISA) and ACA IgM is 2 MPL U/ml( metode ELISA) , anti B2 glikoprotein 1 IgG: negative (<2), anti B2 glikoprotein 1 IgM: negative(6.62). Both My ACA were negative but it said hyperagregation.
    My dr said i’m ready for embryo transfer next month. My question is:
    1. Do i have tendency of developing blood clot or IID immunology disfunction that will affect embryo implantation? If yes what Medicine should i take in the first, second, or third semester?
    2. Do i need Futher ACA test again? If the result were negative why it said i had hyperagregation?
    3. Chance of successful implantation and prognosis?
    4. How long should i wait if my period is not coming on time following hysteroscopy?

    Regards,
    Mel

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 8, 2018 reply

    1. Do i have tendency of developing blood clot or IID immunology disfunction that will affect embryo implantation? If yes what Medicine should i take in the first, second, or third semester?

    A: To determine this you need more extensive IID testing (see below)

    2. Do i need Futher ACA test again? If the result were negative why it said i had hyperagregation?

    A: I do not believe you do!

    3. Chance of successful implantation and prognosis?

    A: I would need much more information

    4. How long should i wait if my period is not coming on time following hysteroscopy?

    A: About 6 weeks.

    Unless tests for immunologic implantation dysfunction (IID) are performed correctly and conducted by a one of the few reliable reproductive immunology reference laboratory in the United States, treatment will likely be unsuccessful. . In this regard it is most important that the right tests be ordered and that these be performed by a competent laboratory. There are in my opinion only a handful of reliable Reproductive Immunology Laboratories in the world and most are in the U.S.A. Also, it is my opinion that far too often, testing is inappropriate with the many redundant and incorrect tests being requested from and conducted by suboptimal laboratories. Finally for treatment to have the best chance of being successful, it is vital that the underlying type of IID (autoimmune IID versus alloimmune) be identified correctly and that the type, dosage, concentration and timing of treatments be carefully devised and implemented.
    Who Should Undergo IID testing?
    When it comes to who should be evaluated, the following conditions should in always raise a suspicion of an underlying IID, and trigger prompt testing:
    • A diagnosis of endometriosis or the existence of symptoms suggestive of endometriosis (heavy/painful menstruation and pain with ovulation or with deep penetration during intercourse) I would however emphasize that a definitive diagnosis of endometriosis requires visualization of the lesions at laparoscopy or laparotomy)
    • A personal or family history of autoimmune disease such as hyper/hypothyroidism (as those with elevated or depressed TSH blood levels, regardless of thyroid hormonal dysfunction), Lupus erythematosus, Rheumatoid arthritis, dermatomyositis, scleroderma etc.)
    • “Unexplained” infertility
    • Recurrent pregnancy loss (RPL)
    • A history of having miscarried a conceptus that, upon testing of products of conception, was found to have a normal numerical chromosomal configuration (euploid).
    • Unexplained IVF failure
    • “Unexplained” intrauterine growth retardation due to placental insufficiency or late pregnancy loss of a chromosomally normal baby
    What Parameters should be tested?
    In my opinion, too many Reproductive Immunologists unnecessarily unload a barrage of costly IID tests on unsuspecting patients. In most cases the initial test should be for NK cell activation, and only if this is positive, is it necessary to expand the testing.
    The parameters that require measurement include:
    o For Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or uterine cytokine measurement. As far as the ideal environment for performing such tests, it is important to recognize that currently there are only about 5 or 6, Reproductive Immunology Reference Laboratories in the U.S capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity (in my opinion).
    o For Alloimmune implantation Dysfunction: While alloimmune Implantation usually presents with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive started having repeated miscarriages it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in IID when there is concomitant NK/CTL activation (see elsewhere on this blog).
    How should results be interpreted?
    Central to making a diagnosis of an immunologic implantation dysfunction is the appropriate interpretation of natural killer cell activity (NKa) .In this regard, one of the commonest and most serious errors, is to regard the blood concentration of natural killer cells as being significant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. Then there is the interpretation of reported results. The most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In my opinion, trying to interpret the effect of adding IVIG or Intralipid to the sample in order assess whether and to what degree the use of these products would have a therapeutic benefit is seriously flawed and of little benefit. Clinically relevant NK cell deactivation can only be significantly effected in vivo and takes more than a week following infusion to occur. Thus what happens in the laboratory by adding these products to the sample prior to K-562 target cell testing is in my opinion likely irrelevant.
    There exists a pervasive but blatant misconception on the part of many, that the addition of Intralipid (IL) /immunoglobulin-G IVIG) can have an immediate down-regulatory effect on NK cell activity. This has established a demand that Reproductive Immunology Reference Laboratories report on NK cell activity before and following exposure to IVIG and/or IL. However, the fact is that activated “functional” NK cells (NKa) cannot be deactivated in the laboratory. Effective down-regulation of activated NK cells can only be adequately accomplished if their activated “progenitor/parental” NK cells are first down-regulated. Thereupon once these down-regulated “precursor” NK cells are exposed to progesterone, they will begin spawning normal and functional NK cells, which takes about 10-14 days. It follows that to assess for a therapeutic response to IVIG/IL therapy would require that the patient first be treated (10-14 days prior to embryo transfer) and thereupon, about 2 weeks later, be retested. While at 1st glance this might seem to be a reasonable approach, in reality it would be of little clinical benefit because even if blood were to be drawn 10 -14 days after IL/IVIG treatment it would require an additional 10 days to receive results from the laboratory, by which time it would be far too late to be of practical advantage.
    Neither IVIG nor IL is capable of significantly suppressing already activated “functional NK cells”. For this to happen, the IL/IVIG would have to down-regulate progenitor (parent) NK cell” activity. Thus, it should be infused 10-14 several prior to ovulation or progesterone administration so that the down-regulated “progenitor/precursor” NK cells” can propagate a sufficient number of normally regulated “functional NK cell” to be present at the implantation site 7 days later. In addition, to be effective, IL/IVIG therapy needs to be combined with steroid (dexamethasone/prednisone/prednisolone) therapy to down-regulates (often) concomitantly activated T-cells.
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Sally - July 8, 2018 reply

    Hi Dr Sher, I have been an advocate of yours for a few years and followed a lot of your advice on your blogs. I am 42 and have DOR and quite a number of failed cycles. My RE suggested I do the flare cycle, but for years I pushed back on your advice. Having nothing to lose and before proceeding to donor egg, I did a flare cycle and it was my successful cycle.. i had 3 good quality blasts and am now pregnant. I want other women to know that we are all different and flare can work for older women with DOR. You have suggested that the ovaries contain high levels of testosterone that can overtax egg development and compromise quality, but i don’t think that’s correct given my experience. If you can’t publish your study, then I don’t think it’s fair you rule out the flare cycle for older women. My testosterone levels were always very low.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 8, 2018 reply

    Good luck to you Sally!

    Geoff Sher

  • Carla - July 8, 2018 reply

    Hi Dr.

    My beta 8 days past 5 day FET is 352. Would you say that’s a low number?

    Carla - July 8, 2018 reply

    Also progesterone is 22 and estrogen is 280. Are those ok levels?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 8, 2018 reply

    Also good!

    Geoff Sher

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 8, 2018 reply

    To the contrary, it is high!

    Geoff Sher

  • Jen - July 7, 2018 reply

    Hi dr Sher
    How long after hysteroscopy the period will resume to normal? My ACA test showed hypercoagulation. Does it affect implantation chance following embryo transfer? I’m worried if embryo won’t attach to uterus because of the blood clot.

    Regards
    Jen

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 7, 2018 reply

    Hi Jen,

    The hysteroscopy per se should not delay your period. As for your ACA . This alone should not affect implantation but it could be part of a bigger immunologic implantation issue and should be investigated further….in my opinion.

    Unless tests for immunologic implantation dysfunction (IID) are performed correctly and conducted by a one of the few reliable reproductive immunology reference laboratory in the United States, treatment will likely be unsuccessful. . In this regard it is most important that the right tests be ordered and that these be performed by a competent laboratory. There are in my opinion only a handful of reliable Reproductive Immunology Laboratories in the world and most are in the U.S.A. Also, it is my opinion that far too often, testing is inappropriate with the many redundant and incorrect tests being requested from and conducted by suboptimal laboratories. Finally for treatment to have the best chance of being successful, it is vital that the underlying type of IID (autoimmune IID versus alloimmune) be identified correctly and that the type, dosage, concentration and timing of treatments be carefully devised and implemented.
    Who Should Undergo IID testing?
    When it comes to who should be evaluated, the following conditions should in always raise a suspicion of an underlying IID, and trigger prompt testing:
    • A diagnosis of endometriosis or the existence of symptoms suggestive of endometriosis (heavy/painful menstruation and pain with ovulation or with deep penetration during intercourse) I would however emphasize that a definitive diagnosis of endometriosis requires visualization of the lesions at laparoscopy or laparotomy)
    • A personal or family history of autoimmune disease such as hyper/hypothyroidism (as those with elevated or depressed TSH blood levels, regardless of thyroid hormonal dysfunction), Lupus erythematosus, Rheumatoid arthritis, dermatomyositis, scleroderma etc.)
    • “Unexplained” infertility
    • Recurrent pregnancy loss (RPL)
    • A history of having miscarried a conceptus that, upon testing of products of conception, was found to have a normal numerical chromosomal configuration (euploid).
    • Unexplained IVF failure
    • “Unexplained” intrauterine growth retardation due to placental insufficiency or late pregnancy loss of a chromosomally normal baby
    What Parameters should be tested?
    In my opinion, too many Reproductive Immunologists unnecessarily unload a barrage of costly IID tests on unsuspecting patients. In most cases the initial test should be for NK cell activation, and only if this is positive, is it necessary to expand the testing.
    The parameters that require measurement include:
    o For Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or uterine cytokine measurement. As far as the ideal environment for performing such tests, it is important to recognize that currently there are only about 5 or 6, Reproductive Immunology Reference Laboratories in the U.S capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity (in my opinion).
    o For Alloimmune implantation Dysfunction: While alloimmune Implantation usually presents with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive started having repeated miscarriages it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in IID when there is concomitant NK/CTL activation (see elsewhere on this blog).
    How should results be interpreted?
    Central to making a diagnosis of an immunologic implantation dysfunction is the appropriate interpretation of natural killer cell activity (NKa) .In this regard, one of the commonest and most serious errors, is to regard the blood concentration of natural killer cells as being significant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. Then there is the interpretation of reported results. The most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In my opinion, trying to interpret the effect of adding IVIG or Intralipid to the sample in order assess whether and to what degree the use of these products would have a therapeutic benefit is seriously flawed and of little benefit. Clinically relevant NK cell deactivation can only be significantly effected in vivo and takes more than a week following infusion to occur. Thus what happens in the laboratory by adding these products to the sample prior to K-562 target cell testing is in my opinion likely irrelevant.
    There exists a pervasive but blatant misconception on the part of many, that the addition of Intralipid (IL) /immunoglobulin-G IVIG) can have an immediate down-regulatory effect on NK cell activity. This has established a demand that Reproductive Immunology Reference Laboratories report on NK cell activity before and following exposure to IVIG and/or IL. However, the fact is that activated “functional” NK cells (NKa) cannot be deactivated in the laboratory. Effective down-regulation of activated NK cells can only be adequately accomplished if their activated “progenitor/parental” NK cells are first down-regulated. Thereupon once these down-regulated “precursor” NK cells are exposed to progesterone, they will begin spawning normal and functional NK cells, which takes about 10-14 days. It follows that to assess for a therapeutic response to IVIG/IL therapy would require that the patient first be treated (10-14 days prior to embryo transfer) and thereupon, about 2 weeks later, be retested. While at 1st glance this might seem to be a reasonable approach, in reality it would be of little clinical benefit because even if blood were to be drawn 10 -14 days after IL/IVIG treatment it would require an additional 10 days to receive results from the laboratory, by which time it would be far too late to be of practical advantage.
    Neither IVIG nor IL is capable of significantly suppressing already activated “functional NK cells”. For this to happen, the IL/IVIG would have to down-regulate progenitor (parent) NK cell” activity. Thus, it should be infused 10-14 several prior to ovulation or progesterone administration so that the down-regulated “progenitor/precursor” NK cells” can propagate a sufficient number of normally regulated “functional NK cell” to be present at the implantation site 7 days later. In addition, to be effective, IL/IVIG therapy needs to be combined with steroid (dexamethasone/prednisone/prednisolone) therapy to down-regulates (often) concomitantly activated T-cells.
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Sandi - July 7, 2018 reply

    Hi Dr Sher, for my FET, I have been prescribed the combination of Crinone 2 times a day starting 5 days before transfer in addition to PIO 50mg IM starting day of transfer. What are your thoughts on using both Crinone and PIO? Shouldn’t PIO be started at the same time as Crinone. I don’t understand the benefits of adding PIO on day of transfer and using it in combination with Crinone.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 7, 2018 reply

    I don’t use this combination in my practice. In my opinion it is somewhat of “over-kill”. but I doubt it would be harmful.

    Geoff Sher

    Sandi - July 8, 2018 reply

    Thank you Dr Sher. I do have another question. It appears that my protocol calls for 6 days of crinone twice a day and FET will be on day 7. I’ve never heard of anyone transferring on day 7 of progesterone. What is your take on this and does this decrease my success rate compared to the usual day 6 transfer? Thank you.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 8, 2018 reply

    With a few notable exceptions that relate to an Endometrial Receptivity Assay showing that an extra day is needed, I do all FET’s 6 days after starting progesterone.

    Geoff Sher

  • Maria - July 7, 2018 reply

    Hello Dr. Sher,
    I am 38 with no fertility issues other than my age. Spouse has low morphology, motility and high dna fragmentation.
    Last IVF I was on 225 gonal f and 3 vials of menopure for 5 days then 5 vials of menopure and 75 gonal f. I was also on omniprope. I was triggered with pregnyl. We got 9 eggs, 6 fertilized and 5 made it to day 5. PGS showed that 4 were abnormal. Can this high number of abnormal embryos be caused by high dose of menopure?
    My prior cycles I was only on one or two vials of menopure and normally had half of my embryos normal chromosomally.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 7, 2018 reply

    In my opinion, the protocol used for ovarian stimulation is pivotal.

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *The 4th edition of my book,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

    Maria - July 7, 2018 reply

    Dr Sher, do you think high doses of Menopure can cause embryo aneuplody?

    Thank you very much in advance for you response!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 7, 2018 reply

    That in my opinion depends on the underlying clinical circumstances.

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).
    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.
    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.
    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.
    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.
    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.
    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH
    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.
    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.
    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.
    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com. You can also apply online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Mya - July 6, 2018 reply

    Hi dr Sher
    I have one PGS normal embryo and last week i’ve done hysteroscopy. Dr said i had mild infection in my uterus and found one small myoma 0,6-0,7cm. She removed the myoma and gave me antibiotics and progynova for 10 days. She said i am ready for embryo transfer next month. My question is:
    1. Do i need further endometrial biopsy to make sure the uterus is free from infection?
    2. With antibiotics alone is it enough to totally cure the infection and prepare uterus for implantation? Is 10 days antibiotics dosage enough?
    3. Can myoma grow back during pregnancy? Do i need to worry about it being cancerous?
    4. after pgs normal embryo and hysteroscopy done, what is the chance of implantation?

    Best Regards,
    Mya

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 6, 2018 reply

    1. Do i need further endometrial biopsy to make sure the uterus is free from infection?

    A: see below

    2. With antibiotics alone is it enough to totally cure the infection and prepare uterus for implantation? Is 10 days antibiotics dosage enough?

    A see below

    A: Chronic endometritis is a very dubious diagnosis in this country because it usually occurs associated with pelvic tuberculosis which is very, very rare. Accute endometritis is almost invariably the result of retained products of conception following delivery, incomplete miscarriage or incomplete abortion.

    3. Do i need to worry about it being cancerous?

    A: no!

    4. after pgs normal embryo and hysteroscopy done, what is the chance of implantation?

    A: Provided you produce a good lining as evidenced by ultrasound assessment of the endometrium, the chance of success should be good!

    Geoff Sher

  • Carmel - July 6, 2018 reply

    HI Dr Sher
    My questions is around your comments about choosing the right protocol over 40.
    I really need some advice ! I do feel we over 40 are pushed to a particular protocol, what do you think of below?
    My hormone and other blood result levels are all normal.
    My FSH is normal, (5-8 variable) My AMH is 6, was 9 in Feb, LH (3-5 variable), Oestradiol <60ng D2/D3.
    My egg count varies 7-10 each month. I have seen 10 recently twice but unfortunately didnt start a cycle those months,
    Im on my second cycle of IVF in the UK in London, July 2018. I turned 43 the end of April 2018.
    My two cycles are similar- starting with 600 IU Fostium (F), two days, 300 (F) 300 Merional(M) and then only (M) 450 . Cetrotide at 5AM next day. I had 7/8 follicles starting, 7 were to be harvested, only 4 returned eggs, no ICSI as sperm top quality: (2 x 1PN; 1 x many sperm stuck around it not getting in; 1 divided itself). Now second cycle is almost the same – with more Merional perhaps.
    I thought the eggs might be "immature" – harvesting was about 17 mm.
    I'm now on D6 of Stim and expecting 4 to be harvested.
    Any advice?
    thankyou so much!!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 6, 2018 reply

    We really need to talk so I can extract the information needed to provide authoritative advice to you! In the interim, consider the following:

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).
    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.
    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.
    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.
    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.
    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.
    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH
    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.
    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.
    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.
    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com. You can also apply online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Shilpa Hulbanni - July 6, 2018 reply

    I have completed one IVF cycle that yielded 3 embryos. However, all were abnormal after pgs testing. What does that mean or indicate for the next cycle? Should I do another cycle? I am in my between month, and don’t know if I should wait longer.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - July 6, 2018 reply

    Hi Shilpa,

    I would need much more information to comment authoritatively. However, I can tell you that there are many factors that impact egg/embryo quality and several are reversible.

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).

    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).

    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.

    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.

    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.

    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.

    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH

    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.

    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.

    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.

    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com. You can also apply online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

Ask a question or post a comment