Dr. Sher Blog

Official blog of Dr. Geoffrey Sher

Ask Dr. Sher- Open Forum

by Dr. Geoffrey Sher on December 1, 2015

You are not alone. Dr. Sher is here to answer your questions and support you.

If you would like to schedule a one on one Skype, telephone, or in person consultation with Dr. Sher, please fill out the form on the right and our team will get you scheduled right away.

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Share this post:

17,623 comments

Leave A Reply
  • Maria - November 9, 2018 reply

    Hi Dr. Sher,
    I had a transfer 3 weeks ago and my first and second hcg were 53 the third one dropped to 49 so the doctor told me to stop the medications. 5 days later I had another hcg which went up to 79. The doctor checked my hcg again the next day and it was still 79. She couldn’t see anything on the ultrasound. She is suspecting an ectopic pregnancy but not sure if she should give me the medication.
    My transfer was on 10/19 so today would be 6 weeks. I am worried about rapturing my tube if it’s ectopic. Can it rapture even if my hcg is only 79 and nothing is seen on ultrasound?
    What would you recommend in this situation?

    Thank you!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 9, 2018 reply

    This is more likely to be an intrauterine “chemical” pregnancy than it is to be an ectopic. And noQ It is not likely that if it is an ectopic it would rupture with such a low beta.

    Good luck!

    Geoff Sher

  • Judy - November 8, 2018 reply

    Thank you for your response.
    In this case (our two frozen embryos, one is euploid, the other is high level mosaic 47, xx, +20) would it be safer to transfer them in separate cycles as the one may be more likely to not implant or to miscarry?
    Thank you.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 9, 2018 reply

    In my opinion, these embryos could be transferred separately or together.

    Geoff Sher

  • Maribelle Smith - November 8, 2018 reply

    Hi Dr.
    I have one frozen aneuploid embryo: Results: -2, -19, +20. As a last resort would you transfer this embryo?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 8, 2018 reply

    Personally I only recommend transferring aneuploid embryos that have a single autosomal defect.

    Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or pre-implantation embryo development, and represents a major cause of early pregnancy loss. About a decade ago, I and an associate, Levent Keskintepe Ph.D. were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3 fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
    Most IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, there is now growing evidence to suggest that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “auto correction”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases occurring within our IVF network. So clearly, by summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring.
    Thus by discarding all aneuploid embryos we, in so doing, might be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.
    The basis for such embryo “auto correction” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.” Many such mosaic embryos will In the process of subsequent cell replication convert to the normal euploid state (i.e. autocorrect)
    It is against this background, that an ever increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:
    1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “auto correction”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
    2. “Mitotic aneuploidy” occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically euploid early embryo mutate and become aneuploid. This is referred to as mosaicism. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will be “competent” and capable of propagating a normal conceptus.
    Since some mitotically aneuploid (“mosaic”) embryos can and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to differentiate between these two varieties of aneuploidy would be of enormous clinical value. Since some mosaic embryos can “autocorrect” and even go on to propagate a viable baby, the ability to confirm that aneuploidy is mitotic (potentially reversible) would provide a strong argument in favor of preserving certain aneuploid embryos for future dispensation. Unfortunately however, there is presently no microscopic or genetic test that can reliable differentiate between meiotic and mitotic aneuploidy.
    Aneuploidy, whether meiotic or mitotic in origin involves the addition of one or more chromosomes to a given pair in human embryos. Certain aneuploidies involve only a single, chromosome pair (simple aneuploidy) while others involve more than a single pair (i.e. complex aneuploidy). Evidence suggests that complex aneuploidy, whether meiotic or mitotic in origin is almost always lethal while all forms of meiotic aneuploidy are permanent. Some aneuploidies, especially those that involve addition of a chromosome to any pair (trisomy) will at times progress to clinical pregnancies (e.g. trisomy 15, 18, 21 or when the sex chromosomes are involve). And as stated previously, most aneuploid embryos, should they attach, will miscarry or result in a chromosomally defective offspring.
    On the other hand, some aneuploid embryos have one chromosome (in a given pair) missing (i.e. monosomy). Aside from monosomy involving absence of the Y-sex chromosome (i.e. XO) which can resulting in a live birth (Turner syndrome) all other monosomies involving autosomes (non-sex chromosomes) are lethal and will not result in viable offspring.
    Since it is presently not possible, without removing more than 1 cell from an embryo (a very traumatic event) to differentiate between meiotic and mitotic aneuploidy, it follows that making a diagnosis of embryo aneuploidy does not allow for identification of mosaic embryos for transfer. This is especially true when it comes to trisomic embryos that can and sometimes do, propagate chromosomal birth defects such as Down syndrome. It is important to bear in mind that the transfer of trisomic embryos (whether due to meiotic or mitotic aneuploidy) can result in miscarriage or a birth defect. This makes any attempt to transfer such embryos to the uterus fraught with risk and in my opinion, ill advised. Conversely, since true meiotic autosomal monosomic embryos cannot propagate viable pregnancies, performing embryo transfer in such cases in the hope that the aneuploidy is mitotic (mosaic) in origin and will spontaneously “ auto correct”, is a rational consideration. Needless to say, such action would require full disclosure, and the execution of a detailed, informed consent agreement which would include an expressed commitment to undergo prenatal genetic testing aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.
    Since it is meiotic rather than mitotic aneuploidy that is invariably lethal and given that meiotic aneuploidy originates in the egg, it is my belief that the closer to fertilization that embryo biopsy is done for PGS, the more likely it is that any aneuploidy detected, will be meiotic in origin. The longer you wait thereafter, the greater the likelihood that with repeated mitotic division, mutational changes will result in mitotic aneuploidy (mosaicism). This is why I strongly believe embryo biopsies should be performed on day 2-3 post fertilization rather on day 5-6 days (the blastocyst stage).”

    Geoff Sher
    800-780-7437

  • Judy - November 8, 2018 reply

    Thank you for your discussion about mosaic embryos.
    We had NGS testing done on our 2 remaining frozen embryos from donor egg. Both are grade 3 (fair/poor) and were hatching at thaw. The first one tested euploid and is recommended for transfer. The second one tested 47, xx, +20, high level mosaic (the scale being high level is >40-80% mosaic.) Our Dr. does not recommend transferring the 2nd one as she is high level mosaic.
    Does this recommendation align with your findings on mosaics, as she is high level mosaic?
    Thank you so much.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 8, 2018 reply

    Very respectfully Judy. I disagree. I would transfer both and follow-up with CVS/amniocentesis if you do conceive.

    Good luck!

    Geoff Sher

  • patrick masih - November 8, 2018 reply

    Hi Dr Sher would you transfer an embryo that is complex aneuploid & mosaic chromosomes: with these results? 47; mos -12,+21, +22 mos del (X) (p22.2 -pter)
    if its a maybe what would be the consideration?

    Thanks so much for what you do Dr Sher!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 8, 2018 reply

    I would not recommend transferring such an embryo.

    Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or pre-implantation embryo development, and represents a major cause of early pregnancy loss. About a decade ago, I and an associate, Levent Keskintepe Ph.D. were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3 fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
    Most IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, there is now growing evidence to suggest that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “auto correction”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases occurring within our IVF network. So clearly, by summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring.
    Thus by discarding all aneuploid embryos we, in so doing, might be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.
    The basis for such embryo “auto correction” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.” Many such mosaic embryos will In the process of subsequent cell replication convert to the normal euploid state (i.e. autocorrect)
    It is against this background, that an ever increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:
    1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “auto correction”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
    2. “Mitotic aneuploidy” occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically euploid early embryo mutate and become aneuploid. This is referred to as mosaicism. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will be “competent” and capable of propagating a normal conceptus.
    Since some mitotically aneuploid (“mosaic”) embryos can and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to differentiate between these two varieties of aneuploidy would be of enormous clinical value. Since some mosaic embryos can “autocorrect” and even go on to propagate a viable baby, the ability to confirm that aneuploidy is mitotic (potentially reversible) would provide a strong argument in favor of preserving certain aneuploid embryos for future dispensation. Unfortunately however, there is presently no microscopic or genetic test that can reliable differentiate between meiotic and mitotic aneuploidy.
    Aneuploidy, whether meiotic or mitotic in origin involves the addition of one or more chromosomes to a given pair in human embryos. Certain aneuploidies involve only a single, chromosome pair (simple aneuploidy) while others involve more than a single pair (i.e. complex aneuploidy). Evidence suggests that complex aneuploidy, whether meiotic or mitotic in origin is almost always lethal while all forms of meiotic aneuploidy are permanent. Some aneuploidies, especially those that involve addition of a chromosome to any pair (trisomy) will at times progress to clinical pregnancies (e.g. trisomy 15, 18, 21 or when the sex chromosomes are involve). And as stated previously, most aneuploid embryos, should they attach, will miscarry or result in a chromosomally defective offspring.
    On the other hand, some aneuploid embryos have one chromosome (in a given pair) missing (i.e. monosomy). Aside from monosomy involving absence of the Y-sex chromosome (i.e. XO) which can resulting in a live birth (Turner syndrome) all other monosomies involving autosomes (non-sex chromosomes) are lethal and will not result in viable offspring.
    Since it is presently not possible, without removing more than 1 cell from an embryo (a very traumatic event) to differentiate between meiotic and mitotic aneuploidy, it follows that making a diagnosis of embryo aneuploidy does not allow for identification of mosaic embryos for transfer. This is especially true when it comes to trisomic embryos that can and sometimes do, propagate chromosomal birth defects such as Down syndrome. It is important to bear in mind that the transfer of trisomic embryos (whether due to meiotic or mitotic aneuploidy) can result in miscarriage or a birth defect. This makes any attempt to transfer such embryos to the uterus fraught with risk and in my opinion, ill advised. Conversely, since true meiotic autosomal monosomic embryos cannot propagate viable pregnancies, performing embryo transfer in such cases in the hope that the aneuploidy is mitotic (mosaic) in origin and will spontaneously “ auto correct”, is a rational consideration. Needless to say, such action would require full disclosure, and the execution of a detailed, informed consent agreement which would include an expressed commitment to undergo prenatal genetic testing aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.
    Since it is meiotic rather than mitotic aneuploidy that is invariably lethal and given that meiotic aneuploidy originates in the egg, it is my belief that the closer to fertilization that embryo biopsy is done for PGS, the more likely it is that any aneuploidy detected, will be meiotic in origin. The longer you wait thereafter, the greater the likelihood that with repeated mitotic division, mutational changes will result in mitotic aneuploidy (mosaicism). This is why I strongly believe embryo biopsies should be performed on day 2-3 post fertilization rather on day 5-6 days (the blastocyst stage).”

    Geoff Sher
    800-780-7437

  • Nora - November 8, 2018 reply

    Hi Dr Sher,

    I’m devastated to hear from my Dr that my pregnancy is not looking viable. My hcg numbers continue to double however my sac has barely grown. On 11/2 it measure 5w 4 d and on 11/7 it measured 5w 6d and the Dr. said it should be 6w 2d. Is there any hope here at all for this to grow at my next visit or is all lost?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 8, 2018 reply

    If the US assessment was accurate, itvdoes not look promising, I am afraid!

    So sorry!

    Geoff Sher

    Nora - November 8, 2018 reply

    So sad. My 1st ivf failure then. I’m 43 do you recommend I try again or will I never have a healthy egg at my age? Last cycle produced 8 – 6 mature- 5 fertilized and all 5 were transferred on day 3.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 8, 2018 reply

    The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Naser Neziri - November 8, 2018 reply

    We had 8 time ivf process unsucces the problem is the womens eggs are empty Any treatment for this ?During the ivf process everything goes right but at the egg retrival all egss 12 or 13 are empty :(:(

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 8, 2018 reply

    Frequently, when following vigorous and often repeated flushing of follicles at egg retrieval they fail to yield eggs, it is ascribed to “Empty Follicle Syndrome.” This is a gross misnomer, because all follicles contain eggs. So why were no eggs retrieved from the follicles? Most likely it was because they would/could not yield the eggs they harbored.
    This situation is most commonly seen in older women, women who have severely diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS). In my opinion it is often preventable when an optimal, individualized and strategic protocol for controlled ovarian stimulation (COS) is employed and the correct timing and dosage is applied to the “hCG trigger shot.”
    Normally, following optimal ovarian stimulation, the hCG “trigger shot” is given for the purpose of it triggering meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse, so that the egg can detach and readily be captured at egg retrieval (ER).
    Ordinarily, normal eggs (and even those with only one or two chromosomal irregularities) will readily detach and be captured with the very first attempt to empty a follicle. Eggs that have several chromosomal numerical abnormalities (i.e., are “complex aneuploid”) are often unable to facilitate this process. This explains why when the egg is complex aneuploid, its follicle will not yield an egg…and why, when it requires repeated flushing of a follicle to harvest an egg, it is highly suggestive of it being aneuploid and thus “incompetent” (i.e., incapable of subsequently propagating a normal embryo).
    Older women, women with diminished ovarian reserve, and those with polycystic ovarian syndrome, tend to have more biologically active LH in circulation. LH causes production of male hormone (androgens, predominantly testosterone), by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced ovogenesis (egg development). Too much LH activity compromises the latter, and eggs so affected are far more likely to be aneuploid following meiosis.
    Women with the above conditions have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the hCG trigger, leading to fruitless attempts at retrieval and the so called “empty follicle syndrome.”
    The developing eggs of women who have increased LH activity (older women, women with diminished ovarian reserve, and those with PCOS) are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Because of this, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole), drugs that contain LH or hCG (e.g., Menopur), or protocols of ovarian stimulation that provoke increased exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols”) and the use of “late pituitary blockade” (antagonist) protocols can be prejudicial.
    The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used, and the timing of its administration in such cases cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG (hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG can, by compromising meiosis, increase the risk of egg aneuploidy, and thus of IVF outcome.
    There is in my opinion no such condition as “Empty Follicle Syndrome.” All follicles contain eggs. Failure to access those eggs at ER can often be a result of the protocol used for controlled ovarian stimulation.

    .I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.
    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoff Sher MD

    ADDENDUM:

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).

    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.

    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.

    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.

    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.

    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH

    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.

    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.

    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.

    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.

  • Danielle - November 7, 2018 reply

    Dr Sher
    I have an embryo 4AA that has tested trisomy 7 on NGS PGS. We are hoping it is an undiagnosed mosaic. Would you consider transferring this as a last option? Have you seen any successes from non-mosaic abnormal embryo transfers? Do you think the fact that it is trisomy 7, which can be found in placental biopsies/CVS with normal babies in natural pregnancies has any significance ?
    thank you

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 7, 2018 reply

    I would definitely transfer it!

    Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or pre-implantation embryo development, and represents a major cause of early pregnancy loss. About a decade ago, I and an associate, Levent Keskintepe Ph.D. were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3 fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
    Most IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, there is now growing evidence to suggest that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “auto correction”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases occurring within our IVF network. So clearly, by summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring.
    Thus by discarding all aneuploid embryos we, in so doing, might be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.
    The basis for such embryo “auto correction” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.” Many such mosaic embryos will In the process of subsequent cell replication convert to the normal euploid state (i.e. autocorrect)
    It is against this background, that an ever increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:
    1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “auto correction”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
    2. “Mitotic aneuploidy” occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically euploid early embryo mutate and become aneuploid. This is referred to as mosaicism. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will be “competent” and capable of propagating a normal conceptus.
    Since some mitotically aneuploid (“mosaic”) embryos can and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to differentiate between these two varieties of aneuploidy would be of enormous clinical value. Since some mosaic embryos can “autocorrect” and even go on to propagate a viable baby, the ability to confirm that aneuploidy is mitotic (potentially reversible) would provide a strong argument in favor of preserving certain aneuploid embryos for future dispensation. Unfortunately however, there is presently no microscopic or genetic test that can reliable differentiate between meiotic and mitotic aneuploidy.
    Aneuploidy, whether meiotic or mitotic in origin involves the addition of one or more chromosomes to a given pair in human embryos. Certain aneuploidies involve only a single, chromosome pair (simple aneuploidy) while others involve more than a single pair (i.e. complex aneuploidy). Evidence suggests that complex aneuploidy, whether meiotic or mitotic in origin is almost always lethal while all forms of meiotic aneuploidy are permanent. Some aneuploidies, especially those that involve addition of a chromosome to any pair (trisomy) will at times progress to clinical pregnancies (e.g. trisomy 15, 18, 21 or when the sex chromosomes are involve). And as stated previously, most aneuploid embryos, should they attach, will miscarry or result in a chromosomally defective offspring.
    On the other hand, some aneuploid embryos have one chromosome (in a given pair) missing (i.e. monosomy). Aside from monosomy involving absence of the Y-sex chromosome (i.e. XO) which can resulting in a live birth (Turner syndrome) all other monosomies involving autosomes (non-sex chromosomes) are lethal and will not result in viable offspring.
    Since it is presently not possible, without removing more than 1 cell from an embryo (a very traumatic event) to differentiate between meiotic and mitotic aneuploidy, it follows that making a diagnosis of embryo aneuploidy does not allow for identification of mosaic embryos for transfer. This is especially true when it comes to trisomic embryos that can and sometimes do, propagate chromosomal birth defects such as Down syndrome. It is important to bear in mind that the transfer of trisomic embryos (whether due to meiotic or mitotic aneuploidy) can result in miscarriage or a birth defect. This makes any attempt to transfer such embryos to the uterus fraught with risk and in my opinion, ill advised. Conversely, since true meiotic autosomal monosomic embryos cannot propagate viable pregnancies, performing embryo transfer in such cases in the hope that the aneuploidy is mitotic (mosaic) in origin and will spontaneously “ auto correct”, is a rational consideration. Needless to say, such action would require full disclosure, and the execution of a detailed, informed consent agreement which would include an expressed commitment to undergo prenatal genetic testing aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.
    Since it is meiotic rather than mitotic aneuploidy that is invariably lethal and given that meiotic aneuploidy originates in the egg, it is my belief that the closer to fertilization that embryo biopsy is done for PGS, the more likely it is that any aneuploidy detected, will be meiotic in origin. The longer you wait thereafter, the greater the likelihood that with repeated mitotic division, mutational changes will result in mitotic aneuploidy (mosaicism). This is why I strongly believe embryo biopsies should be performed on day 2-3 post fertilization rather on day 5-6 days (the blastocyst stage).”

    Geoff Sher

  • Kasey - November 7, 2018 reply

    Dear Dr Sher,
    34 years old and good ovarian reserve and always good lining. I am unclear what might be going on here. We have known male factor (very low motility and morphology, count is average – vericocele found). We did our first round of IVF ICSI in January and though 14 mature eggs, all were abnormal and none fertilized. Dr attributed to stimulation medication dosages. In March, reduced dosages, had 14 mature eggs and 10 fertilized, 4 made it to day 5 blast. Our first fresh transfer was a chemical (HCG 61 before dropping off) (4mg estrace & 90 mg crinone daily). Followed by 2 negative FETs. For the first FET (one very medicated, 10mg estrace + 180 mg of crinone daily), second was more natural (0 estrace, 400 mg prometrium daily). We never did genetic testing on our embryos. Prior to this last cycle, we did a sonohystegram & 2 endometrial biopsies (was on antibiotics in between because found very mild chronic endometritis which cleared before FET#2). With only one embryo left, I wonder what you recommend? Does it seem possible that it is an egg issue (despite them not being visually abnormal second time around). Is it a sperm issue? Is it an embryo issue? It’s hard to believe that we’ve just been unlucky 3 times in a row and that it is not related to sperm, egg, or embryo.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 7, 2018 reply

    In spite of your husband’s sperm issue, it is in my opinion still highly likely that this is an underlying egg issue, perhaps linked to the protocol used for ovarian stimulation and its implementation.

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).

    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.

    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.

    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.

    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.

    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH

    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.

    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.

    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.

    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .
    I strongly recommend that you visit www. SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Christine - November 7, 2018 reply

    Hi Doctor,
    We have been trying to conceive for 2 years now, I am 30 and my fiancé 36.
    After trying for 1 year we went through several exams and my gynecologist mentioned I might have PCOS, with only symptom 12 follicles on my right ovary, no any others symptoms, my period are regular. She put on clomid for 3 months but no results. 3 months ago we went back home ( we are expats in shanghai ) and went to see a well known gynecologist and he asked me to do the NK cells blood test, here were the results:
    CD56+16 (percentual) 4.5%
    CD56+16 (absoluto) 107
    CD3 (percentual) 85.6%
    CD3 (absoluto) 2062
    After seeing the results he said it might be difficult for us to have a baby as my body reject my partner semen.
    He gave me some more medicine to try for 6 months (clomid, Fertisop, folliculim, folliculimum, utrogestan) hoping it will work.
    With the results of my NK cells I made lots of research on internet and find that I need to do the activated NK cells blood test and it seems that the one I did isn’t it.
    I’m quite confused because now I’m back to China and it’s hard to find a doctor who can help and advise me on that.
    Your advise would be so much appreciated, I could also send you the copy of my NK cells blood test for your reference.
    Looking forward to your hear from you
    Very best

    Christine

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 7, 2018 reply

    Unless tests for immunologic implantation dysfunction (IID) are performed correctly and conducted by a one of the few reliable reproductive immunology reference laboratory in the United States, treatment will likely be unsuccessful. . In this regard it is most important that the right tests be ordered and that these be performed by a competent laboratory. There are in my opinion only a handful of reliable Reproductive Immunology Laboratories in the world and most are in the U.S.A. Also, it is my opinion that far too often, testing is inappropriate with the many redundant and incorrect tests being requested from and conducted by suboptimal laboratories. Finally for treatment to have the best chance of being successful, it is vital that the underlying type of IID (autoimmune IID versus alloimmune) be identified correctly and that the type, dosage, concentration and timing of treatments be carefully devised and implemented.
    Who Should Undergo IID testing?
    When it comes to who should be evaluated, the following conditions should in always raise a suspicion of an underlying IID, and trigger prompt testing:
    • A diagnosis of endometriosis or the existence of symptoms suggestive of endometriosis (heavy/painful menstruation and pain with ovulation or with deep penetration during intercourse) I would however emphasize that a definitive diagnosis of endometriosis requires visualization of the lesions at laparoscopy or laparotomy)
    • A personal or family history of autoimmune disease such as hyper/hypothyroidism (as those with elevated or depressed TSH blood levels, regardless of thyroid hormonal dysfunction), Lupus erythematosus, Rheumatoid arthritis, dermatomyositis, scleroderma etc.)
    • “Unexplained” infertility
    • Recurrent pregnancy loss (RPL)
    • A history of having miscarried a conceptus that, upon testing of products of conception, was found to have a normal numerical chromosomal configuration (euploid).
    • Unexplained IVF failure
    • “Unexplained” intrauterine growth retardation due to placental insufficiency or late pregnancy loss of a chromosomally normal baby
    What Parameters should be tested?
    In my opinion, too many Reproductive Immunologists unnecessarily unload a barrage of costly IID tests on unsuspecting patients. In most cases the initial test should be for NK cell activation, and only if this is positive, is it necessary to expand the testing.
    The parameters that require measurement include:
    o For Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or uterine cytokine measurement. As far as the ideal environment for performing such tests, it is important to recognize that currently there are only about 5 or 6, Reproductive Immunology Reference Laboratories in the U.S capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity (in my opinion).
    o For Alloimmune implantation Dysfunction: While alloimmune Implantation usually presents with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive started having repeated miscarriages it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in IID when there is concomitant NK/CTL activation (see elsewhere on this blog).
    How should results be interpreted?
    Central to making a diagnosis of an immunologic implantation dysfunction is the appropriate interpretation of natural killer cell activity (NKa) .In this regard, one of the commonest and most serious errors, is to regard the blood concentration of natural killer cells as being significant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. Then there is the interpretation of reported results. The most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In my opinion, trying to interpret the effect of adding IVIG or Intralipid to the sample in order assess whether and to what degree the use of these products would have a therapeutic benefit is seriously flawed and of little benefit. Clinically relevant NK cell deactivation can only be significantly effected in vivo and takes more than a week following infusion to occur. Thus what happens in the laboratory by adding these products to the sample prior to K-562 target cell testing is in my opinion likely irrelevant.
    There exists a pervasive but blatant misconception on the part of many, that the addition of Intralipid (IL) /immunoglobulin-G IVIG) can have an immediate down-regulatory effect on NK cell activity. This has established a demand that Reproductive Immunology Reference Laboratories report on NK cell activity before and following exposure to IVIG and/or IL. However, the fact is that activated “functional” NK cells (NKa) cannot be deactivated in the laboratory. Effective down-regulation of activated NK cells can only be adequately accomplished if their activated “progenitor/parental” NK cells are first down-regulated. Thereupon once these down-regulated “precursor” NK cells are exposed to progesterone, they will begin spawning normal and functional NK cells, which takes about 10-14 days. It follows that to assess for a therapeutic response to IVIG/IL therapy would require that the patient first be treated (10-14 days prior to embryo transfer) and thereupon, about 2 weeks later, be retested. While at 1st glance this might seem to be a reasonable approach, in reality it would be of little clinical benefit because even if blood were to be drawn 10 -14 days after IL/IVIG treatment it would require an additional 10 days to receive results from the laboratory, by which time it would be far too late to be of practical advantage.
    Neither IVIG nor IL is capable of significantly suppressing already activated “functional NK cells”. For this to happen, the IL/IVIG would have to down-regulate progenitor (parent) NK cell” activity. Thus, it should be infused 10-14 several prior to ovulation or progesterone administration so that the down-regulated “progenitor/precursor” NK cells” can propagate a sufficient number of normally regulated “functional NK cell” to be present at the implantation site 7 days later. In addition, to be effective, IL/IVIG therapy needs to be combined with steroid (dexamethasone/prednisone/prednisolone) therapy to down-regulates (often) concomitantly activated T-cells.
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Michele - November 6, 2018 reply

    Dr. Sher,
    Thank you for what you do!

    I was reading that slow fetal heart rate (bradycardia) is
    FHR < 120 bpm between 6.3 and 7 weeks.

    I was 6.3 weeks at my last ultrasound with FHR of 111. Does this mean that my embryo has a slow heart rate for its gestational age?

    Does slow heart rate at 6w2d indicate heart problems or aneuploidy? It is a PGS tested blastocyst.

    Thank you!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 6, 2018 reply

    I would wait a week and repeat the US. It is probably going to be OK!

    Good luck and G-d bless!

    Geoff Sher

  • Patrick Masih - November 6, 2018 reply

    Hi Dr. Sher we had an embryo return this PGS result: aneuploid mosaic duplication on long arm chromosome 8 and trisomy 16 (47: Mos Dup (8) (q22.1-qter) +16)
    How risky would this be to transfer & would we always be able to detect any birth defect at the amnio stage?

    thanks,

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 6, 2018 reply

    I personally would not transfer an embryo with >1 chromosomal abnormality.

    Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or pre-implantation embryo development, and represents a major cause of early pregnancy loss. About a decade ago, I and an associate, Levent Keskintepe Ph.D. were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3 fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
    Most IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, there is now growing evidence to suggest that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “auto correction”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases occurring within our IVF network. So clearly, by summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring.
    Thus by discarding all aneuploid embryos we, in so doing, might be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.
    The basis for such embryo “auto correction” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.” Many such mosaic embryos will In the process of subsequent cell replication convert to the normal euploid state (i.e. autocorrect)
    It is against this background, that an ever increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:
    1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “auto correction”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
    2. “Mitotic aneuploidy” occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically euploid early embryo mutate and become aneuploid. This is referred to as mosaicism. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will be “competent” and capable of propagating a normal conceptus.
    Since some mitotically aneuploid (“mosaic”) embryos can and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to differentiate between these two varieties of aneuploidy would be of enormous clinical value. Since some mosaic embryos can “autocorrect” and even go on to propagate a viable baby, the ability to confirm that aneuploidy is mitotic (potentially reversible) would provide a strong argument in favor of preserving certain aneuploid embryos for future dispensation. Unfortunately however, there is presently no microscopic or genetic test that can reliable differentiate between meiotic and mitotic aneuploidy.
    Aneuploidy, whether meiotic or mitotic in origin involves the addition of one or more chromosomes to a given pair in human embryos. Certain aneuploidies involve only a single, chromosome pair (simple aneuploidy) while others involve more than a single pair (i.e. complex aneuploidy). Evidence suggests that complex aneuploidy, whether meiotic or mitotic in origin is almost always lethal while all forms of meiotic aneuploidy are permanent. Some aneuploidies, especially those that involve addition of a chromosome to any pair (trisomy) will at times progress to clinical pregnancies (e.g. trisomy 15, 18, 21 or when the sex chromosomes are involve). And as stated previously, most aneuploid embryos, should they attach, will miscarry or result in a chromosomally defective offspring.
    On the other hand, some aneuploid embryos have one chromosome (in a given pair) missing (i.e. monosomy). Aside from monosomy involving absence of the Y-sex chromosome (i.e. XO) which can resulting in a live birth (Turner syndrome) all other monosomies involving autosomes (non-sex chromosomes) are lethal and will not result in viable offspring.
    Since it is presently not possible, without removing more than 1 cell from an embryo (a very traumatic event) to differentiate between meiotic and mitotic aneuploidy, it follows that making a diagnosis of embryo aneuploidy does not allow for identification of mosaic embryos for transfer. This is especially true when it comes to trisomic embryos that can and sometimes do, propagate chromosomal birth defects such as Down syndrome. It is important to bear in mind that the transfer of trisomic embryos (whether due to meiotic or mitotic aneuploidy) can result in miscarriage or a birth defect. This makes any attempt to transfer such embryos to the uterus fraught with risk and in my opinion, ill advised. Conversely, since true meiotic autosomal monosomic embryos cannot propagate viable pregnancies, performing embryo transfer in such cases in the hope that the aneuploidy is mitotic (mosaic) in origin and will spontaneously “ auto correct”, is a rational consideration. Needless to say, such action would require full disclosure, and the execution of a detailed, informed consent agreement which would include an expressed commitment to undergo prenatal genetic testing aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.
    Since it is meiotic rather than mitotic aneuploidy that is invariably lethal and given that meiotic aneuploidy originates in the egg, it is my belief that the closer to fertilization that embryo biopsy is done for PGS, the more likely it is that any aneuploidy detected, will be meiotic in origin. The longer you wait thereafter, the greater the likelihood that with repeated mitotic division, mutational changes will result in mitotic aneuploidy (mosaicism). This is why I strongly believe embryo biopsies should be performed on day 2-3 post fertilization rather on day 5-6 days (the blastocyst stage).”

    Geoff Sher

  • Sara - November 6, 2018 reply

    Hi doctor. My ivf failed. I had 2 follicles and 2 eggs. Clinic said that my eggs were overmature and didnt fertilize. I was on synarela and stimmed with fostimon 450 iu for 12 days. I am 32 years Old. What does IT mean that eggs are overcooked is IT due to bad egg quality. Did 3day bloodtest yesterday my fsh is now 11 and – and lh very low under 1. Can lh be low due to failed ivf?
    What happens when lh is that low?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 6, 2018 reply

    This is likely an ovarian stimulation issue. It also appears as if you have diminished ovarian reserve (DOR) In my opinion, the protocol needs to be reviewed carefully and revised.

    In my opinion, against the backdrop of age and diminished ovarian reserve (DOR), the protocol used for ovarian stimulation is one of the most important drivers of egg “competence” (quality) and the number, yielded.
    Women who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.

    While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy

    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Fran - November 6, 2018 reply

    Frozen transfer oct 17. Positive pregnancy oct 29 (hcg 250) oct 31 repeat tests (583). Nov 4 the start of bleedingfrom brown, light pink to red blood. Went to hospital and they did blood work at 5w2d. Blood came back 1617 but they said a little low for 5weeks. I noticed that bleeding happens when I take endometrin but when accompanied with estrace- no bleeding. Is this common or a sign of a miscarriage? Did more blood today and I get results tomorrow. So nervous. No cramps but bleeding still. Plz help me understand this. Thanks!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 6, 2018 reply

    It is possible hat this is simply a “threatened miscarriage” and all will resolve. Unfortunately only time will tell. I suggest a confirmatory US in about 2 days time. The bleeding has probably little to do with hormonal therapy.

    Geoff Sher

    Fran - November 6, 2018 reply

    Ultrasound was done yesterday and they were able to measure it (2in I believe the dr said). He’s waiting on the blood work from yesterday morning. Find out more today. What are your thoughts now?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 6, 2018 reply

    If the US showed a healthy heartbeat, you could be fine!

    Good luck!

    Geoff Sher

  • Mackenzie A. - November 5, 2018 reply

    Hi! I am 27 years old and have two healthy beautiful kids, a 5 year old boy and a 2 year old girl both conceived naturally without any complications. I have since had three miscarriages. One in March of 2017 at 11 weeks, one in October of 2017 at 16 weeks, and one in October of 2018 at 5 weeks. I have had all my hormones tested and my doctor has told me my levels are normal. She also sent me for an ultrasound to measure my eggs and uterine lining which all came back normal as well. My husband and I so badly want to have more kids but can’t seem to figure out what is wrong and where to go from here. We are willing to go to greater lengths but don’t want to put all the money into it if my body isn’t going to carry the pregnancy. I would so appreciate your insight on why you think this is happening. Unexplained miscarriages are so stressful, I just want to know what’s wrong so I can start the steps to fixing it. Thank you so much for your time and help!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 5, 2018 reply

    When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
    Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
    • Early pregnancy loss (first trimester)
    • Late pregnancy loss (after the first trimester)
    • Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
    • Early pregnancy losses usually occur sporadically (are not repetitive).
    In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
    Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
    There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
    Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
    Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
    1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
    • Inadequate thickening of the uterine lining
    • Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
    • Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
    • Deficient blood flow to the uterine lining (thin uterine lining).
    • Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
    • Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.
    2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

    IMMUNOLOGIC IMPLANTATION DYSFUNCTION
    Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
    But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
    Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
    Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.

    Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
    However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
    DIAGNOSING THE CAUSE OF RPL
    In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
    Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

    • Karyotyping (chromosome analysis) both prospective parents
    • Assessment of the karyotype of products of conception derived from previous miscarriage specimens
    • Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
    • Hysterosalpingogram (dye X-ray test)
    • Hysteroscopic evaluation of the uterine cavity
    • Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
    • Immunologic testing to include:
    a) Antiphospholipid antibody (APA) panel
    b) Antinuclear antibody (ANA) panel
    c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
    d) Reproductive immunophenotype
    e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
    f) Alloimmune testing of both the male and female partners
    TREATMENT OF RPL
    Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
    Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
    Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.

    Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
    Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
    The Use of IVF in the Treatment of RPL
    In the following circumstances, IVF is the preferred option:
    1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
    2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
    The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
    Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
    There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
    The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

    I strongly recommend that you visit www. SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Anita - November 4, 2018 reply

    Hello Dr. Sher,

    Thank you very much for answering our questions daily. I know DHA is important for a pregnant woman to consume. How ugh do you recommend during pregnancy in vitamin form? And do you recommend a certain brand?

    Thank you in advance,

    Anita

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 4, 2018 reply

    There are numerous brands. The recommended dosage of DHA is..300 mg daily.

    Geoff Sher

  • Denise - November 4, 2018 reply

    Dear Dr. Sher,
    How long stay do you keep your patients on Estrace (twice daily) and PIO shots (1ml/evening) after confirmed pregnancy via FET?

    Along with Betas, my doctor also check my E2 and P4 at 9dp5dt and 16dp5dt. What should these e2 and p4 levels be during pregnancy?
    Thanks!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 4, 2018 reply

    I do not see the benefit of routinely monitoring E2/P4 levels during early pregnancy.

    Geoff Sher

    Denise - November 5, 2018 reply

    How long would you recommend staying on Estrace and PIO after FET?

    Does taking Estrace during the first trimester cause a developing male embryo to be more effeminate?

    Thank you!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 5, 2018 reply

    1. How long would you recommend staying on Estrace and PIO after FET?

    A: Up to the 10th week of pregnancy.

    2. Does taking Estrace during the first trimester cause a developing male embryo to be more effeminate?

    A: No!

    Geoff Sher

  • Ayesha - November 4, 2018 reply

    Dear Dr,
    I am 19 weeks 7 day pregnant and suffering from excruciating wisdom tooth pain. Its unbearable! Now the question is are x rays and wisdom tooth extraction safe in pregnancy? I heard it causes damage and possible mc (God forbid) . Please help!

    Thankyou in advance!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 4, 2018 reply

    It is targeted to the jaw and will cause no harm.

    Geoff Sher

  • Sara - November 4, 2018 reply

    Hi Dr. Sher,
    I was diagnosed with DOR back in September. I am 28 and my AMH is .22. Obviously this was a big shock, but we decided to jump right into IVF to freeze embryo. I just finished my first cycle. I was on a micro flare protocol. 10 units of Lupron twice a day, 300 gonal F and 150 menopur. Day 1, I had 6 follicles.
    By day 4 I wasn’t really responding as well as the doctors would have liked so they raised me to 450 iu gonal F.
    Long story short, by trigger time I had 12 follicles and 14 eggs were retrieved. I stimmed for 16 days ( very long I know)

    I was very surprised to get 14 eggs but ultimately, only one fertilized ( and we are still waiting to hear if it makes it) . The other 13 were really bad, multiplying and doing weird things. Pretty much self destructive. We did tons of genetic testing so I don’t think it’s anything genetic, unless the test for this has yet to be invented.
    Our doctors suggest doing another round with an antagonist protocol.
    What do you think our chances of normal eggs next time around is?
    Looking for some support..
    Thanks,
    Sara

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 4, 2018 reply

    In my opinion, “flare protocols” are best avaoided in older women and (regardless of age) in women with DOR. It increases LH release and ovarian testosterone to the point that (in my opinion), it compromizes egg quality.

    Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview
    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD
    I also suggest that you access the 4th edition of my book ,”In Vitro Fertilization, the ART of Making Babies”. It is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    SARA - November 5, 2018 reply

    thank you for your response.
    so in your opinion, do you think its possible the 150 meopur and 450 IU Gonal – F could have compromised my egg quality even more?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 5, 2018 reply

    Not the specific meds but the configuration of the stimulation protocol needs to be reviewed carefully.

    Geoff Sher

    SARA - November 5, 2018

    and considering my amh is .2 and started with 6 follicles, do you think its odd that I ended up with 12 follicles and 14 eggs after 16 days? is it normal for follicle count to double in a cycle?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 5, 2018

    It is somewhat surprising and unusual.

    Geoff Sher

  • TL - November 4, 2018 reply

    Hi Dr. Sher

    I am 40 year olds and just went through with my first round of IVF which was unsuccessful due to premature ovulation. My RE was able to retrieve one mature which did not fertilize using ICSI. I was on an antagonist protocol taking 300 of gonal F (once a day) and 225 of menopur ( increased from 150 once a day) and cetrotide. I produced 2-3 follicles on my right ovary which measured 19,17, and 13 and one 13 on my left ovary at the time of trigger. I triggered with 40 units of lupron and 5,000 of HCG. My RE now wants to try the microflare protocol instead of the estrogen priming due to cetrotide being a part of that protocol. His rationale is that I ovulated early on the cetrotide. My Amh is 0.23 and my RE states that I will probably ever only produced 2-3 eggs. Since I have DOR and am a poor responder is this the best protocol for me?

    My Blood levels the day before retrieval were:
    E2 Level: 527 (it was 725 the day prior)
    HCG: 126.8
    LH: 67.92
    P4: 1.9 (0.5 the day prior)

    Miscarriages : May 2018 & September 2018 both at 6 weeks ( no genetic testing performed)
    Live Birth: I have a 2 year old

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 4, 2018 reply

    I do not support the use of microflare protocols in older women, nor do I advocate the use the Lupron “trigger””.Since its recent introduction, this approach has really gained popularity and caught on in a big way. In truth, there can be little argument that it markedly reduces the incidence, severity and risk of complications associated with severe ovarian hyperstimulation. However use of the “Lupron trigger” often comes at the expense of egg/embryo quality as well as IVF outcome. Thus, the question arises as to whether this approach is advisable, and if not, what the best alternative to its use would be. The reason why the “Lupron trigger” is in my opinion ill-advised, is that in cases of ovarian hyperstimulation, where there are numerous follicles with eggs that need to undergo meiosis following the “trigger”, the magnitude of the LH surge, induced by a “Lupron GnRHa trigger” is often insufficient. This can result in suboptimal egg maturation (meiosis), leading to the generation of an inordinate number of immature/dysmature eggs as well as in an increase in the number of large follicles that fail to yield eggs at all (“so called “empty follicles).

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).
    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.
    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.
    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.
    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.
    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.
    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH
    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.
    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.
    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.
    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Maria - November 3, 2018 reply

    Hello again Dr. Sher,

    Is it true that he hypothalamus and pituitary gland can have an effect on the reason for so many immature eggs? I just started my new IVF cycle yesterday with 5mg letrozole, 225ml repronex, orgalutran, and now adding the 10,000 HCG, as I mentioned to you in another question that I was given 5000U in 3 previous cycles and all but 2 came back immature. What could be the reason if I inject the 10,000U and they still come back immature? and what would your thoughts be for the next step, if this is the case?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 3, 2018 reply

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).

    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.

    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.

    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.

    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.

    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH

    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.

    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.

    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.

    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .
    I strongly recommend that you visit www. SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Loelia - November 3, 2018 reply

    Dear Dr. Sher, I’ve read your book and really appreciated your insights on mini-IVF vs. IVF. I am currently in a cycle at New Hope, and it’s my understanding that it is not a mini-IVF as I still take a lot of injections (50 mg clomid and 100 GonalF daily). I have DOR so I understand the stimulation may not work as well as other more “normal” candidates, but the thing is: I started with 8 AFC (all 1100 before cetrotide). Appreciate your thoughts on it. Many thanks!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 3, 2018 reply

    Respectfully, I do not believe that clomiphene is a suitable medication for older women and those with DOR.

    Geoff Sher

  • Yvette Clark - November 2, 2018 reply

    Hi Dr. Sher,

    I had a 5 day blast transfer on 10/20/18. First beta on 10/31/18 confirmed pregnancy w/ HCG level of 129. Second beta this morning showed HCG of 195. I know this is not an optimal rise, and am scheduled to return for another blood test in three days. Do you think there’s any hope here?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 2, 2018 reply

    This does not look promising but it is possible that you started off with a multiple pregnancy and have now reduced to one (1) spontaneously. In such cases the hCG level will not rise appropriately at first but then picks up. I suggest you wait 4 days after the last test and repeat the hCG> . It should be at least 800 by then.

    Good luck!

    Geoff Sher

  • Kimberly Jones - November 2, 2018 reply

    Hello Dr. Sher,
    A little over 2 years ago, I was diagnosed with Premature Ovarian Failure at the age of 29. I also have Endometriosis which has resulted in 9 surgeries. I was pretty much told I could never have a baby. My OBGYN sent me to a infertility specialist that confirmed the same diagnose. The following year, I got pregnant but had a miscarriage shortly there after. I went back to the infertility specialist and he said that since I got pregnant probably means I have some eggs just not a lot. Also, none one could ever tell me why I have POF, they did lots of tests but they just said it was due to all my many surgeries for Endometriosis. That still doesn’t sit well with me as I think there is a root cause, but no one has figured that out. Well my infertility specialist then decided we could do IVF since I did get pregnant. We did 3 months of prep dosing me with high levels of estrogen and then we did the IVF last Fall 2017. After 9 days of taking Gonal F, Menopur, and Lupron; my IVF failed because my follicles wouldn’t grow. I had 12 in total. Since then I have been taking a more holistic approach and got pregnant again but had another miscarriage, but now have found that I have very low progesterone. I’m currently taking a ton of supplements my doctor put me on and only real medication I’m on is estrogen and Synthroid for my hypothyroidism. I also take 2 tinctures of herbal medicine; 1 is for days 1-14 and 2nd is for days 15-28 with a combination of progesterone cream that I increase during the second part of the month.
    I’m not happy with my current state as I feel like no one knows what to do with me.
    Questions:
    1-What do you think caused POF? And can we reverse it?
    2-Do I have empty follicles? Do you think I have any eggs left? My AMH is extremely low.
    3-Would clomid help me?
    4-What do you think I should do next?
    I REALLY appreciate your help. I’m at a lost and don’t know what to do. We want a baby so badly and we are just praying for a miracle. Also, my hubby has been tested and everything is good with him.
    Thank you,
    Kimberly Jones

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 2, 2018 reply

    1-What do you think caused POF? And can we reverse it?

    A: The cause is usually genetic but it can be due to compromised blood flow to the ovaries as a result of advanced endometriosis with scarring or scarring due to repeated surgeries. Sadly, it is definitely not reversible.

    2-Do I have empty follicles? Do you think I have any eggs left? My AMH is extremely low.

    A: you probably have run out of eggs and would need to consider egg donation seriously

    3-Would clomid help me?

    A: Definitely a waste of time

    4-What do you think I should do next?

    A: As stated, you need egg donation but you need to bear in mind that endonmetris and autoimmmune hypothyrouidsm both can be associated with an immunologic implantation dysfunction linked to activation of uterine natural killer cells (NKa) ,. This needs to be investigated and addressed in advance of any embryos being transferred.

    WE should talk. I invite you to call Tina at 800-780-7437 and set up a Skype consultation with me to discuss your options going forward.

    Geoff Sher

  • nuria - November 2, 2018 reply

    der sher, i m in a natural cycle to obtain the follicule, how is your protocol in this treatment? dou you use ganirelix? i only use ganirelix when follicules are 15 mm or more. how can affect this medicament in a natural cycle? in the first cycle i had my cycle was bloked because of ganirelix when foliculle of 14 mm, now i started on day 12 when follicule 15 mm and estradiol 95, this is done correctly?many thanks for yoyr help

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 2, 2018 reply

    Hi Nuria,

    I do not do natural cycle IVF at all. The results across the board are dismal.

    Geoff Sher

  • Min - November 2, 2018 reply

    Hi Dr. Sher, I am 39 and DH is 43. I have PCOS and husband has motility issue. We have gone through 3 failed IUI and 3 failed IVFs (IVF all happened in 2018). First IVF, 9 eggs retrieved, 7 fertilized (ICSI) but no blast on day 5, still transferred two 10 cells embryos which resulted in negative. I was concerned of lab experience then I switched clinic with more experience. Second IVF cycle, Gonal-F was increased, and I have 7 eggs with 5 fertilized. this round, I have 1 1BB blastcytes and one close to morale which both were transferred. After egg retrieval, I have severe OSHH which required bedrest. However, this cycle still resutled negative pregnancy. Third cycle of IVFs, Gonal-F was increased and we have 17 egg retrieved with 12 matured but only 5 fertilized. Out of 5, we got 1 2BB blast and 1 morale which both transferred. This cycle, I started to bleed 4 days post 5 day embryo transfer for about 4 days and during these 4 days, i also have very bad bloating, low grade fever and abdominal cramp.

    We are at the point not sure what to do next and quite can’t figure out should we change clinic since this clinic is a lot more protocolized and the first clinic is very academic. We did not do PGS as I don’t think our embryo will survive the freezing process.

    I am on prenatal vitamin and Co-enzyme q10 and my husband is on Co-enzyme and L-carnitine. All the IVF cycles I have used Gonal-F/menapure/cetrotide.

    I want to get your thoughts on what we should do next and is there any test we should request when we talked to our physician.

    Thanks much.
    Min

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 2, 2018 reply

    Polycystic ovary syndrome (PCOS) is a common hormonal system disorder among women affecting between 5% and 10% of women of reproductive age worldwide. Women with PCOS may have enlarged ovaries that contain multiple small collections of fluid (subcapsular microcysts) that are arranged like a “string of pearls” immediately below the ovarian surface (capsule).interspersed by an overgrowth of ovarian connective tissue (stroma). The condition is characterized by abnormal ovarian function (irregular or absent periods, abnormal or absent ovulation and infertility, androgenicity (increased body hair or hirsutism, acne) and increased body weight –body mass index or BMI.
    Women with PCOS are often at increased risk that ovarian stimulation with gonadotropins will result in the development of severe ovarian hyperstimulation syndrome (OHSS), a life-endangering condition that is often accompanied by a profound reduction in egg “competency” and on fertilization often yield an inordinately high percentage of “incompetent” embryos which have a reduced potential to propagate viable pregnancies.
    Concern and even fear that their PCOS patients will develop of OHSS often leads the treating RE to take measures aimed at reducing the risk of this life-endangering condition. One such measures is to “trigger” egg maturation prematurely in the hope of arresting further follicular growth and the other, is to initiate the “trigger” with a reduced dosage of hCG (i.ed. 5,000U rather than the usual 10,000U of of Pregnyl/Profasi/Novarel, to use or 250mcg rather than 500mcg of Ovidrel or to supplant the hCG “trigger” with a Lupron “trigger” which causes a prompt LH surge from the woman’s pituitary gland to take place. While such measures do indeed reduce the risk of OHSS to the mother, this often comes at the expense of egg quantity and “competency”. Fewer than the anticipated number of eggs are harvested and those that are retrieved are far more likely to be “immature” and chromosomally abnormal (aneuploid”), or “immature” , thereby significantly compromising IVF outcome.
    Against this background, It is my considered opinion that when it comes to performing IVF in women with PCOS, the most important consideration must be the selection and proper implementation of an individualized or customized ovarian stimulation protocol. Thereupon, rather than prematurely initiating the “trigger” to arrest further follicle growth, administering a reduced dosage of hCG or “triggering with a GnRH agonist (e.g. Lupron/Buserelin) that can compromise egg “competency”….. use of one of the following techniques will often markedly reduce the risk of OHSS while at the same time protecting egg quality:
    • 1. PROLONGED COASTING…my preferred approach: My preferred approach is to use a long pituitary down-regulation protocol coming off the BCP which during the last 3 days is overlapped with the agonist, Lupron/Buserelin/Superfact. The BCP is intended to lower LH and thereby reduce stromal activation (hyperthecosis) in the hope of controlling LH-induced ovarian androgen (predominantly, testosterone) production and release. I then stimulate my PCOS patients using a low dosage of recombinant FSH-(FSHr) such as Follistim/Gonal-F/Puregon. On the 3rd day of such stimulation a smidgeon of LH/hCG (Luveris/Menopur) is added. Thereupon, starting on day 7 of ovarian stimulation, I perform serial blood estradiol (E2) and ultrasound follicle assessments, watching for the number and size of the follicles and the blood estradiol concentration [E2]. I keep stimulating (regardless of the [E2] until 50% of all follicles reach 14mm. At this point, provided the [E2] reaches at least >2,500pg/ml, I stop the agonist as well as gonadotropin stimulation and track the blood E2 concentration daily. The [E2] will almost invariably increase for a few days. I closely monitor the [E2] as it rises, plateaus and then begins to decline. As soon as the [E2] drops below 2500pg/ml (and not before then), I administer a “trigger” shot of 10,000U Profasi/ Novarel/Pregnyl or 500mcg Ovidrel/Ovitrel. This is followed by an egg retrieval, performed 36 hours later. Fertilization is accomplished using intracytoplasmic sperm injection (ICSI) because “coasted” eggs usually have little or no cumulus oophoris enveloping them and eggs without a cumulus will not readily fertilize naturally. Moreover, they also tend to have a “hardened” envelopment (zona pellucida), making spontaneous fertilization problematic in many cases. All fertilized eggs are cultured to the blastocyst stage (up to day 5- 6 days) and thereupon are either vitrified and preserved for subsequent transfer in later hormone replacement cycles or (up to 2) blastocysts are transferred to the uterus, transvaginally under transabdominal ultrasound guidance. The success of this approach depends on precise timing of the initiation and conclusion of “prolonged coasting”. If started too early, follicle growth will arrest and the cycle will be lost. If commenced too late, too many follicles will be post-mature/cystic (>22mm) and as such will usually harbor abnormal or dysmature eggs. Use of “Coasting” almost always prevents the development of severe OHSS, optimizes egg/embryo quality and avoids unnecessary cycle cancellation. If correctly implemented, the worst you will encounter is moderate OHSS and this too is relatively uncommon.
    • 2. MULTIPLE FOLLICLE ASPIRATION: In some cases, in spite of best effort, you inadvertently find mean follicle size to exceed 16mm, thereby leaving too little time to implement “coasting”. On other occasions, “coasting” fails to effectively lower the [E2} below 2,500pg/ml within 3 days. In such case the number of developing follicles can effectively and drastically reduced (culled) through selective transvaginal aspiration prior to initiating the “trigger” with 10,000U hCG. This will almost invariably be accompanied by a rapid and significant drop in the plasma estradiol concentration along with a drastic reduction in the risk of OHSS occurring without significantly compromising egg/embryo quality. Upon completing surgical follicular reduction, the surviving follicles can be allowed to continue their full development, at which point the hCG “trigger” can be implemented. The drawback associated with this approach is that it unfortunately interjects an additional surgical intervention into an already complex and stressful situation.
    • 3. EMBRYO FREEZING AND DEFERMENT OF EMBRYO TRANSFEDR (ET): OHSS is always a self-limiting condition. In the absence of continued exposure to hCG, symptoms and signs as well as the risk of severe complications will ultimately abate. Thus, in the absence of pregnancy, all symptoms, signs and risks associated with OHSS will disappear within about 10-14 days of the hCG trigger. Conversely, since early pregnancy is always accompanied by a rapid and progressive rise in hCG , the severity of OHSS will increase until about the 9th or tenth gestational week whereupon a transition from ovarian to placental hormonal dominance occurs, the severity of OHSS rapidly diminishes and the patient will be out of risk. Accordingly, in cases where in spite of best effort to prevent OHSS, the woman develops symptoms and signs of progressive overstimulation prior to planned ET, all the blastocysts should be vitrified and cryostored for FET in a subsequent hormone replacement cycle. In this way women with OHSS can be spared the risk of the condition spiraling out of control.

    I strongly recommend that you visit www. SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Taking A Fresh Look at Ovarian Hyperstimulation Syndrome (OHSS), its Presentation, Prevention and Management
    • Preventing Severe Ovarian Hyperstimulation Syndrome (OHSS) with “Prolonged Coasting”
    • Understanding Polycystic Ovarian Syndrome (PCOS) and the Need to Customize Ovarian Stimulation Protocols.
    • “Triggering” Egg Maturation in IVF: Comparing urine-derived hCG, Recombinant DNA-hCG and GnRH-agonist:
    • The “Lupron Trigger” to Prevent Severe OHSS: What are the Pro’s and Con’s?
    • My Retirement in the Year Ahead: A letter of Thanks From me to You!

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

    ADDENDUM:
    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).

  • Virginia Kramer - November 2, 2018 reply

    Hi dr, I am 41 and have a 20 month old baby boy. My husband and I want a second baby and my levels have shifted since I was 38. My fSH was a 5 now it’s a 12. We took clomid and it Gave me cysts so now have been on famara the last 5 months and my cycle is 28 days and ovulation, I am doing an hsg test tomorrow to open my tubes. I did that test 2 years ago and a month later got pregnant with my son. So we are tying that again. My question is can I still release a healthy egg even if my amh levels have dropped now that I am 41. At what point should we move on to ivf if we still aren’t falling pregnant? I don’t want to miss my window and I keep reading about woman getting pregnant at 40-44 with very low reserve. I just need some guidance thank you so much!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 2, 2018 reply

    Respectfully Virginia,

    At 41y of age with diminished ovarian reserve, you should only be doing IVF at this time and you should do it with preimplantation genetic screening.

    The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Anoop - November 1, 2018 reply

    HI Dr. Sher,
    Appreciate you taking the time to answer our questions. My wife (35) and I (36) went through three failed IUIs, after trying to conceive for 6 months. We did some tests after trying and it was determined that my sperm has low motility and poor morphology. My wife has healthy eggs, yet a lower amount for the average person at her age. My wife went through one IVF stim cycle this past April and we were able to come away with 2 viable embryos from 7 retrieved eggs (8-11 estimated follicles). We elected to do another round of stimulation again before implanting to increase our chances of multiple children. The second stimulation did not work and the retrieval was canceled. We then tried again, and we are now in the same situation. It appears the stimulation medication is having no effect on creating more follicles (it’s as if she is having a natural cycle) and our clinic is recommending to cancel again. For the three IUI’s and the first round of IVF she had responded well to the medication. My question: is this common? To have stimulation fail two times after working well? Can her egg supply drop in 2 months?Is it possible that the retrieval process from the first cycle “damaged” something?

    Thanks

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 2, 2018 reply

    Your wife clearly has diminished ovarian reserve and this, coupled with your sperm dysfunction, in my opinion, negates the use of IUI. You need IVF before time runs out.

    Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview
    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD
    I also suggest that you access the 4th edition of my book ,”In Vitro Fertilization, the ART of Making Babies”. It is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

  • Hope - November 1, 2018 reply

    Hi Dr. Sher. I’m 38 with DOR. I had 4 eggs retrieved after a low-dose IVF cycle. Out of the 4, 3 were mature and all 3 fertilized. Today is day 2 and they seem to be doing well. My clinic is doing a freeze all (preferably on day 5 if things progress well). Assuming they survive until day 3, should I freeze some on day 3 to be on the safe side? I worry about no embryos making it to day 5. What percentage of day 2-3 usually make it to day 5? Thanks!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).

    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.

    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.

    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.

    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.

    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH

    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.

    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.

    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.

    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .
    I strongly recommend that you visit www. SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Sam - November 1, 2018 reply

    Hi Dr.
    I am 42 with two healthy children conceived first try at age 32, 38. My cycle is usually 28 days (never late but occasionally a couple days early) with 6/7 day bleed. I have a 16 day LP. I normally produce a lot of Ewcm starting around day 8/9.

    My FSH 6 months ago was 8. I conceived this summer, on first try. Ended in CP at 4+3. I bled for 3 or 4 days (heavily, with clots). My period took 6 weeks to return! It felt as if I had a cyst on my ovary – I was producing lots of CM but OPK was – and no temp shirt. A few days after sharp pain around ovary that bucked me over, my OPK finally went positive and a day after the positive OPK, my temp shifted to 36.7 (sustained for 3 days). My period showed up 16 days later, as I expected. That period, I had my bloodwork done day 3 as Dr recommended fertility clinic due to my age and the miscarriage. My FSH was a whopping 29 and my E2 was low (40 pmol/L). No CM, dry vagina. Still too early to expect OPK+ but I am tracking daily.

    Is it possible to suddenly hit menopause after a CP? Should I start DHEA? Please help. I cannot get answers from my Dr.

    Oh, I have been taking ubiquinol 200mg per day for 6 months and folate 1000 mcg a day.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    You clearly have diminished ovarian reserve (DOR) and this creates an need for pro activity on your part. At 42y of age, given this development you need IVF and soon.

    The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Maria - November 1, 2018 reply

    Hi Dr. Sher
    I had my 4the for FET 2 weeks ago and put in one pgs tested 6day 5bb embryo. I am 38 with no issues and my husband is 41 with low motility, morphology and high Dna fragmentation. My beta at 10dp6dt was only 53 my second beta was also 53. I am going for my third beta tomorrow but have no hope at this point. Can this turn out to be a viaypregnancy after such low and not increasing numbers?
    Also can high DNA fragmentation cause chemical pregnancies? I have had a 8w MM, a chemical pregnancy and a negative test in prior pgs tested embryos.

    Thank you!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    Sadly, this does not look promising. AND although possible, I doubt that your husband’s sperm DNA fragmentation is the cause.

    Geoff Sher

  • Michelle - November 1, 2018 reply

    Hello Dr. Sher,

    I wonder if you can help me out because I’m not knowledgeable about HCG. I did a 5 day embryo frozen embryo transfer (I transferred two embryos), and 14 days later I did an hcg rest and the number was 1689. Is this considered high for that time frame? I’m asking because I’m concerned about having twins. Please tell me your thoughts. Thank you in advance.

    Michelle

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    Yes!! Indeed it is high! It could be twins on the make!

    Good luck and G-d bless!

    Geoff Sher

  • Nicole Pauly - November 1, 2018 reply

    Hi Dr. Sher,
    I have a 2.5 yr old completely healthy daughter, no complications in her pregnancy labor or delivery, and took about 4 months of trying to conceive her. We have been trying since last August/September and while we’ve gotten pregnant multiple times nothing has worked out. I had a “chemical pregnancy” last December and then a missed miscarriage that ended at 10 wks in April (the baby stopped growing at 6wks). At that time I got blood work done at about 5wks and my progesterone hcg were perfect, thyroid numbers as well. I’ve now had 2 more “chemical pregnancies” since then. I have yet to get any testing as most docs brush off the chemicals and see the mmc as a good sign we are able to get pregnant. My question is what testing should I be asking for? Since reading your article on autoimmune implantation dysfunction and autoimmune implantation dysfunction I’m very afraid one of those is happening. I just find it hard to believe ALL of our eggs and sperm have gone bad but maybe they have?

    Nicole Pauly - November 1, 2018 reply

    I should also note I am 31 today and my husband is 35. And one of those should say alloimmune. Thank you for your time!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    Copy!

    Geoff Sher

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Marie - November 1, 2018 reply

    Hi, I’m 45-years old and still have a regular cycle. I’ve done IUI since last spring and have not had success. The RE I’m working with isn’t monitoring my cycles closely and we’ve missed a couple of months due to an undiagnosed tube blockage and this last cycle because I ovulated 2 days earlier than I had previously been ovulating. I decided to take the summer off hoping to relax and reorient myself, but, am now about to go back to the RE. Is there any particular protocols I should be asking for? The RE is recommending I stick with IUI and pills no injectables because with my age factor it won’t make a difference in outcome. I’m willing to do IVF but would really like to use my own eggs, if possible.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    Respectfully,

    IUI has such a low chance of being successful at 45y of age that it should in my opinion NOT be used. The chance of success is about 1:100 per month of trying. Sadly IVF at 45y is also very unlikely to succeed (<5% per treatment cycle) and is therefore also not a good choice. You need IVF with egg donation.

    Egg donation is the process by which a woman donates eggs for purposes of assisted reproduction or biomedical research. For assisted reproduction purposes, egg donation typically involves in vitro fertilization (IVF) technology, with the eggs being fertilized in the laboratory, unfertilized eggs may be frozen and stored for later use. Egg donation is a third party reproduction as part of assisted reproductive technology (ART).
    For many women, disease and/or diminished ovarian reserve precludes achieving a pregnancy with their own eggs. Since the vast majority of such women are otherwise quite healthy and physically capable of bearing a child, egg donation (ED) provides them with a realistic opportunity of going from infertility to parenthood.
    Egg donation is associated with definite benefits. Firstly, in many instances, more eggs are retrieved from a young donor than would ordinarily be needed to complete a single IVF cycle. As a result, there are often supernumerary (leftover) embryos for cryopreservation and storage. Secondly, since eggs derived from a young woman are less likely than their older counterparts to produce aneuploid (chromosomally abnormal) embryos, the risk of miscarriage and birth defects such as Down’s syndrome is considerably reduced.
    Egg Donation-related, fresh and frozen embryo transfer cycles account for 10%-15% of IVF performed in the United States. The vast majority of egg donation procedures performed in the U.S involve women with declining ovarian reserve. While some of these are done for premature ovarian failure, the majority are undertaken in women over 40 years of age. Recurrent IVF failure due to “poor quality” eggs or embryos is also a relatively common indication for ED in the U.S. A growing indication for ED is in cases of same-sex relationships (predominantly female) where both partners wish to share in the parenting experience by one serving as egg provider and the other, as the recipient.
    Ninety percent of egg donation in the U.S is done through the solicitation of anonymous donors who are recruited through a state-licensed egg donor agency. It is less common for recipients to solicit known donors through the services of a donor agency, although this does happen on occasion. It is also not easy to find donors who are willing to enter into such an open arrangement. Accordingly, in the vast majority of cases where the services of a known donor is solicited, it is by virtue of a private arrangement. While the services of non-family members are sometimes sought, it is much more common for recipients to approach close family members to serve as their egg donor.
    Some recipients feel the compulsion to know or at least to have met their egg donor, so as to gain first hand familiarity with her physical characteristics, intellect, and character. This having been said, in the U.S. it is much more common to seek the services of anonymous donors. In terms of disclosure to their family, friends and child(ren), recipients using anonymous donors tend to be far more open than those of known donors about the nature of the child’s conception. Most, if not all, egg donor agencies provide a detailed profile, photos, medical and family history of each prospective donor for the benefit and information of the recipient. Agencies generally have a website through which recipients can access donor profiles in the privacy of their own homes in order to select the ideal donor.
    Interaction between the recipient and the egg donor program may be conducted in-person, by telephone or online in the initial stages. Once the choice of a donor has been narrowed down to two or three, the recipient is asked to forward all relevant medical records to their chosen IVF physician. Upon receipt of her records, a detailed medical consultation will subsequently held and a physical examination by the treating physician or by a designated alternative qualified counterpart is scheduled. This entire process is usually overseen, facilitated and orchestrated by one of the donor program’s nurse coordinators who, in concert with the treating physician, will address all clinical, financial and logistical issues, as well as answering any questions. At the same time, the final process of donor selection and donor-recipient matching is completed.
    Egg donor agencies usually limit the age of egg donors to women under 35 years with normal ovarian reserve in an attempt to minimize the risk of ovarian resistance and negate adverse influence of the “biological clock” (donor age) on egg quality.
    No single factor instills more confidence regarding the reproductive potential of a prospective egg donor than a history of her having previously achieved a pregnancy on her own, or that one or more recipients of her eggs having achieved a live birth. Moreover, such a track record makes it far more likely that such an ED will have “good quality eggs”. Furthermore, the fact that an ED readily conceived on her own lessens the likelihood that she herself has tubal or organic infertility. This having been said, the current shortage in the supply of egg donors makes it both impractical and unfeasible, to confine donor recruitment to those women who could fulfill such stringent criteria for qualification.
    It is not unheard of for a donor who, at some point after donating eggs, finds herself unable to conceive on her own due to pelvic adhesions or tubal disease, to blame her infertility on complications caused by the prior surgical egg retrieval process. She may even embark upon legal proceedings against the IVF physician and program. It should therefore come as no surprise that it provides a measurable degree of comfort to ED program when a prospective donor is able to provide evidence of having experienced a relatively recent, trouble free spontaneous pregnancy.
    Screening of Donors
    Genetic Screening: The vast majority of IVF programs in the U.S. follow the recommendations and guidelines of the American Society of Reproductive Medicine (ASRM) for selectively genetic screening of prospective egg donors for conditions such as sickle cell trait or disease, thalassemia, cystic fibrosis and Tay Sachs disease, when medically indicated. Consultation with a geneticist is available through about 90% of programs.
    Most recipient couples place a great deal of importance on emotional, physical, ethnic, cultural and religious compatibility with their chosen egg donor. In fact they often will insist that the egg donor be heterosexual.
    Psychological Screening: Americans tend to place great emphasis on psychological screening of egg donors. Since most donors are “anonymous,” it is incumbent upon the ED agency or the IVF program to determine the donor’s degree of commitment as well as her motivation for deciding to provide this service. I have on occasions encountered donors who have buckled under the stress and defaulted mid-stream during their cycle of stimulation with gonadotropins. In one case, a donor knowingly stopped administering gonadotropins without informing anyone. She simply awaited cancellation, which was effected when follicles stopped growing and her plasma E2 concentration failed to rise.
    Such concerns mandate that assessment of donor motivation and commitment be given appropriate priority. Most recipients in the U.S. tend to be very much influenced by the “character” of the prospective egg donor, believing that a flawed character is likely to be carried over genetically to the offspring. In reality, unlike certain psychoses such as schizophrenia or bipolar disorders, character flaws are usually neuroses and are most likely to be determined by environmental factors associated with upbringing. They are unlikely to be genetically transmitted. Nevertheless, egg donors should be subjected to counseling and screening and should be selectively tested by a qualified psychologists. When in doubt, they should be referred to a psychiatrist for more definitive testing. Selective use of tests such as the MMPI, Meyers-Briggs and NEO-Personality Indicator are used to assess for personality disorders. Significant abnormalities, once detected, should lead to the automatic disqualification of such prospective donors.
    When it comes to choosing a known egg donor, it is equally important to make sure that she was not coerced into participating. We try to caution recipients who are considering having a close friend or family member serve as their designated egg donor, that in doing so, the potential always exists that the donor might become a permanent and an unwanted participant in the lives of their new family.
    Drug Screening: Because of the prevalence of substance abuse in our society, we selectively call for urine and/or serum drug testing of our egg donors.
    Screening for STDs: FDA and ASRM guidelines recommend that all egg donors be tested for sexually transmittable diseases before entering into a cycle of IVF. While it is highly improbable that DNA and RNA viruses could be transmitted to an egg or an embryo through sexual intercourse or IVF, women infected with viruses such as hepatitis B, C, HTLV, HIV etc, must be disqualified from participating in IVF with egg donation due to the (abeit remote) possibility of transmission, as well as the potential legal consequences of the egg donation process being blamed for their occurrence.
    In addition, evidence of prior or existing infection with Chlamydia or Gonococcus introduces the possibility that the egg donor might have pelvic adhesions or even irreparably damaged fallopian tubes that might have rendered her infertile. As previously stated, such infertility, subsequently detected might be blamed on infection that occurred during the process of egg retrieval, exposing the caregivers to litigation. Even if an egg donor or a recipient who carries a sexually transmittable viral or bacterial agent is willing to waive all rights of legal recourse, a potential risk still exists that a subsequently affected offspring might in later in life sue for wrongful birth.
    Screening of the Recipient

    Medical Evaluation: while advancing age, beyond 40 years, is indeed associated with an escalating incidence of pregnancy complications, such risks are largely predicable through careful medical assessment prior to pregnancy. The fundamental question namely: “is the woman capable of safely engaging a pregnancy that would culminate in the safe birth of a healthy baby” must be answered in the affirmative, before any infertility treatment is initiated. For this reason, a thorough cardiovascular, hepatorenal, metabolic and anatomical reproductive evaluation must be done prior to initiating IVF in all cases.
    Infectious Screening: the need for careful infectious screening for embryo recipients cannot be overemphasized. Aside from tests for debilitating sexually transmittable diseases, there is the important requirement that cervical mucous and semen be free of infection with ureaplasma urealyticum. This organism which rarely causes symptoms frequents the cervical glands of 15-20% of women in the U.S. The introduction of an embryo transfer catheter via a so infected cervix might transmit the organism into an otherwise sterile uterine cavity leading to early implantation failure and/or first trimester miscarriage.
    Immunologic Screening: Certain autoimmune and alloimmune disorders (see elsewhere) can be associated with immunologic implantation dysfunction (IID). In order to prevent otherwise avoidable treatment failure, it is advisable to evaluate the recipient for autoimmune IDD and also to test both the recipient and the sperm provider for alloimmune similarities that could compromise implantation.
    Disclosure and Consent
    Preparation for egg donation requires full disclosure to all participants regarding what each step of the process involves from start to finish, as well as potential medical and psychological risks. This necessitates that significant time be devoted to this task and that there be a willingness to painstakingly address all questions and concerns posed by all parties involved in the process. An important component of full disclosure involves clear interpretation of the medical and psychological components assessed during the evaluation process. All parties should be advised to seek independent legal counsel so as to avoid conflicts of interest that might arise from legal advice given by the same attorney. Appropriate consent forms are then reviewed and signed independently by the donor and the recipient couple.
    Most embryo recipients fully expect their chosen donor to yield a large number of mature, good quality eggs, sufficient to provide enough embryos to afford a good chance of pregnancy as well as several for cryopreservation (freezing) and storage. While such expectations ore often met, this is not always the case. Accordingly, to minimize the trauma of unexpected and usually unavoidable disappointment, it is essential that in the process of counseling and of consummating agreements, the respective parties be fully informed that by making best efforts to provide the highest standards of care, the caregivers can only assure optimal intent and performance in keeping with accepted standards of care. No one can ever promise an optimal outcome. All parties should be made aware that no definitive representation can or will be made as to the number or quality of ova and embryos that will or are likely to become available, the number of supernumerary embryos that will be available for cryopreservation or the subsequent outcome of the IVF donor process.
    TYPES OF EGG DONATION

    Conventional Egg Donation: This is the basic format used for conducting the process of egg donor IVF. It involves synchronizing the menstrual cycles of both the recipient and the donor by placing the donor and the recipient on a birth control pill so that both parties start stimulation with fertility drugs simultaneously. This ultimately allows for precise timing of the fresh embryo transfer. Using this approach, the anticipated egg donation birth rate is >50% per cycle.
    Preimplantation Genetic Sampling (PGS)-Egg Donation: The recent introduction of complete numerical chromosomal assessment (karyotyping) using metaphase Comparative Genomic Hybridization (mCGH) and Next Generation Gene sequencing (NGS) has the potential to change the manner in which egg donation will be performed in the future. CGH/NGS allows full egg/embryo chromosome analysis providing a 70- 80% assurance that the embryo(s) so selected for transfer are highly likely to be “competent” (i.e. capable of producing a healthy baby). Such PGS-egg selection provides about a 50% chance of a baby per transfer of an embryo derived through fertilization of a pre-vitrified euploid egg. This is at least double that reported when conventional egg donation is used. As a result, mCGH/NGS-Egg Donation allows for excellent results when one or two embryos are transferred, virtually eliminating the risk of “high order” multiple pregnancies (triplets or greater). Moreover, since numerical chromosomal irregularities (aneuploidy) are responsible for most miscarriages, the use of CGH also significantly reduces this dreaded complication.
    PGS egg selection of necessity mandates the use of Staggered (ST)- IVF. Here the egg donor cycle is divided into two parts. The first involves the egg retrieval, fertilization, embryo biopsy for PGS analysis and embryo cryostorage. The second part involving warming or thawing of the frozen embryo(s) and the subsequent transfer of “competent” embryo(s) to the recipient’s uterus is conducted electively at least several weeks later once the results of PGS testing are available. Since, with St-IVF the egg retrieval and embryo transfer are separated in time, the retrieval can be performed without first having to synchronize the menstrual cycles of the recipient and the egg the donor. In fact, the recipient does not even have to be available when the egg donor is going through cycle. All that is needed is for designated sperm to be available (fresh or frozen) on the day of egg retrieval. This avoids unnecessary travel and inconvenience, and minimizes stress and cost.
    Donor Egg Banking: Another imminent advance is the introduction of egg banking. Being able to freeze and bank donor eggs would solve most of these challenges. By using PGS in combination with a egg vitrification (ultra-rapid freezing), we are now capable of improving the birth rate per warmed/thawed egg by a factor of 3-4 fold (from a previous average of <8% per egg to about 27%). Through an electronic catalogue, recipients will be able to select and purchase 1-3 CGH-normal eggs from the comfort of their homes. Thereupon, the selective transfer of 1 or 2 embryos derived from such chromosomally normal eggs could achieve a 50-60% pregnancy rate without the risk of initiating high-order multiple pregnancies in the process. Through this process, the cost, inconvenience and risks associated with “conventional” fresh egg donor cycles would also be reduced significantly.
    Financial Considerations
    The fee paid to the egg donor agency per cycle usually ranges between $2,000 and $8,000. This does not include the cost associated with psychological and clinical pre-testing, fertility drugs, and donor insurance, which commonly range between $3,000 and $6,000. The medical service costs of the IVF treatment cycle ranges between $8,000 and $14,000. The donor stipend can range from $2,000 too as high $50,000 depending upon the exotic requirements of the recipient couple as well as supply and demand. Thus the total out of pocket expenses for an egg donor cycle in the United States range between $15,000 and $78,000, putting egg donation outside the financial capability of most couples needing this service.
    The growing gap between need and affordability has spawned a number of creative ways to try and make IVF with egg donation more affordable. Here are a few examples:
    • Egg banking (see above)
    • Egg Donor Sharing, where one comprehensive fee is shared between two recipients and the eggs are then divided between them. The downside is that fewer eggs are available embryos for transfer and/or cryopreservation.
    • Egg Bartering, where in the course of conventional IVF, a woman undergoing IVF remits some of her eggs to the clinic (who in turn provides it to a recipient patient) in exchange for a deferment of some or all of the IVF fee. In my opinion, such an arrangement can be fraught with problems. For example, in the event that the woman donating some of her eggs fails to conceive while the recipient of her eggs does, it is very possible that she might suffer emotional despair and even go so far as to seek out her genetic offspring. Such action could be very damaging to both her and the recipient, as well as the child.
    • Financial Risk Sharing. Certain IVF programs offer financial risk sharing (FRS) which most recipient couples favor greatly. FRS offers qualifying candidates a refund of fees paid if egg donation is unsuccessful. FRS is designed to spread the risk between the providers, and the recipient couple.
    Moral, Legal & Ethical Considerations: The “Uniform Parentage Act” which has been adopted by most states in the United States declares that the woman who gives birth to the child will be regarded as the rightful mother. Accordingly, there has to date not been any grounds for legal dispute when it comes to maternal custody of a child born through IVF with egg donation in the majority of states. In a few states such as Mississippi and Arizona the law is less clear but nevertheless, as yet, has not been contested.
    The moral-ethical and religious implications of egg donation are diverse and have a profound effect on cultural acceptance of this process. The widely held view that everyone is entitled to their own opinion and has the right to have such opinions respected, governs much of the attitude towards this process in the U.S. The extreme views on each end of the spectrum hold the gentle central swing of the pendulum in place. This attitude is a reflection of the general acceptance in the united states of diverse views and opinions and the willingness to allow free expression of such views and beliefs provided that they don’t infringe on the rights of others.
    So where do we go from here? Can and should we, cryopreserve and store eggs or ovarian tissue from a young woman wishing to defer procreation until it becomes convenient? And if we do this, would it be acceptable to eventually have a woman give birth to her own sister or aunt? Can or should we store viable ovarian tissue through generations. Should egg donation simply become a future source of embryos generated for the purpose of providing stem cells, to be used in the treatment of disease states or to “manufacture” fetuses as a source of spare body parts? If the answer to even some of these questions is yes…what about the checks and balances. Who will exercise control and where what form should such control take? Are we willing to engage this slippery slope where the disregard for the dignity of the human embryo leads us to the point where the rights of a human being are more readily ignored? …………………… Personally, I hope not.
    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

    //////////////////////////////////////////////

    Marie - November 1, 2018 reply

    Unfortunately, due to religious and cultural reasons, DE aren’t a possibility for me. I understand the chances are very low, I’m asking what protocols would maximise the chances I *do* have.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    Herewith:

    The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
    While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
    I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Cassie - October 31, 2018 reply

    Hello Dr. Sher I hope you are well I have a question
    Is 17 day of Estrofem enough time in a medicated fet to then transfer a 5 day embryo as long as lining ect look ok or is it best to wait a few more day like day 19 thanks

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    Not enough information for me to give an authoritative opinion…sorry!

    Geoff Sher

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    17 days on estrogen should be enough to adequately prepare your uterus for FET.

    Geoff Sher

  • Susan Kusper - October 31, 2018 reply

    Hi Dr. Sher,

    I had a D and C (vacuum aspiration only) a year ago due to miscarriage. My husband and I are now trying again. Two cycles ago, my lining on the max dose of estradiol was 6.2 mm, and the cycle was canceled. This last month, my lining was 5.5 mm, I started progesterone in oil shots and it got to 6 mm (with a small amount of fluid) two days before transfer. We went ahead, and I became pregnant but miscarried at 4 weeks 2 days. I had an ultrasound today (would be 5 weeks pregnant) and my lining measured 8 mm. Because of this thickness, my Dr does not think the miscarriage was due to thin lining. But our embryo was PGS tested…

    Is it possible my lining could have thickened to 8 mm before the transfer but after starting the progesterone shots? If it is 8 mm now, does that mean it is capable of thickening appropriately? My fear is damage from the D and C.

    Thank you so much!!

    Susan

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 31, 2018 reply

    Hi Susan,

    It is the thickness of the lining as measured prior to progesterone exposure that matters. Thickness increases after progesterone because of secretions that build up in the endometrial glands and not due to any increase in endometrial cells. Thus, regrettably, if your lining was <8mm prior to progesterone administration, there is a strong likelihood that this pregnancy might not endure.

    I sincerely hope that this prediction turns out to be wrong.

    Geoff Sher

  • Jen w - October 30, 2018 reply

    Hi Dr. Sher
    This might be a silly question but one that has been bothering me.
    I had a day 5 blast transfer fresh 3 days ago , today I was have strong period like cramping which I assume/Hope was implantation cramping. However my 34 lb son got hurt at the playground and I picked him up to comfort him, from that time on all cramping ceased. I am wondering if it is possible that if something was implanting my action could have stopped its progress, and I ruined my chance?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 31, 2018 reply

    I doubt strongly the lifting of your 34lb son would have caused any harm.

    Good luck and G-d bless!

    Geoff Sher

  • Erika Thiede - October 30, 2018 reply

    Hello Dr.,

    I am 28 years old and after many test I have been diagnosed with POF. After many failed attempts, my husband and I moved towards egg donor. The donor is a proven donor, who, at time of donation was 24 years old. From her donation we had 29 eggs, of which fertilized to 15 embryos.

    -At this point we have done 1 fresh transfer (1, 5 day AA blast) and 1 FET (1, 5 day AA blast).
    -I had a Hysteroscopy a year prior and everything was perfect.
    -My uterine lining responded perfectly and was at a 10 during time of both transfers. Also was trilaminar
    -My doctor did a wave test and it was “0” during time of each transfer as well.
    -Due to age we did not PGS test the embryos.
    -I have not had any autoimmune testing or ERA test.
    -My protocol for transfers have included the following:
    *BCP month prior,
    *1 mg estradiol (first transfer was vaginally, second transfer was orally) daily,
    *.25ML intramuscular Delestrogen every other day
    *Then 5 days before transfer I began progesterone.
    *I did 400 MG progesterone vaginally 2x a day.
    *I also did 1 cc intramuscular daily, for a few days, then increased to 2x a day after wave test and continued with 2x a day until after day of transfer.
    *I went back to 1 cc daily and 2 vaginal capsules daily day after transfer.
    *2 days before transfer and including day of transfer I took Doxycycline 2x a day.
    *I also started medrol dose pack 2 days before transfer and continue with protocol for the whole 6 day pack.
    *My first fresh transfer I was on lovenox as my PTT was slightly elevated, for the FET I only took baby aspirin.
    *I also take Vitamin D, Vitamin C, CoQ 10, Prenatals, Selenium, and L Arginine.

    Both cycles resulted in BFN. I am feeling so hopeless. I love my Doctor and Facility as they have started to feel like family, but I cannot imagine trying another time without looking into other tests or possibilities for why my previous 2 transfers failed. Any advice on questions to ask or tests to run? I always imagined donor eggs with such a young donor would be easier. My husband showed slightly low sperm count but everything else was normal and he still had MORE than plenty to fertilize eggs, doctor was not concerned with this.

    I have read it can take more than a few tries, but I am feeling hopeless!

    Thank you

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF
    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

    Kate Yonder - November 1, 2018 reply

    Hi, Erika;
    Similarly, I discovered my infertility when I was 28 after trying for nearly a year. At my second appointment with my first fertility specialist, she uncovered my seven endometriomas, one of which was nearly 11 cm. Three months after my laparoscopy, my thyroid failed and I was prescribed 50 mg of Synthroid. Fast-forward three years after my lap; I have been through an SO-IUI and a day3FET (IVF) and have been through two HSGs (patent), have taken too many medications to mention, including all that you have mentioned, including a blood thinner to improve the uterine lining, and have been on prenatal, CoQ10, VitaminD, Zinc, Beef Liver supplement, and cod liver oil. Also, recently stopped the Synthroid (have been Gluten-free since my diagnosed hypothyroidism and have since got my thyroid back to normal). Both failed. My current (now third) fertility specialist recommends another lap to inspect possible toxins from the initial lap followed by a tubal ligation to prevent possible toxins from leaking into my uterus. Without definitively knowing the cause of my infertility (very well attributed to stage IV endo), she suspects that my tubes are most likely diseased. These are her suspicions and a way of changing the current state of my uterus so that the next IVF is not simply insanity. I hope some of this info helps you plan your next move.

    Dr. Sher, your thoughts on the discussed possible second laparoscopy to check on the status of my endometriosis and perform a tubal ligation are sincerely appreciated.

    Thank you so much.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 1, 2018 reply

    If you have endometriomas that need to be addressed, a laparoscopic resection/laser ablation or sclerotherapy could be needed (see below) otherwise in my opinion, surgery is not going to enhance your fertility treatment potential, I am afraid.

    Your hypothyroidism could be a problem since most of the time, this is due to an autoimmune cause. Autoimmune hypothyroidism is associated with an immunologic implantation dysfunction (IID) linked to natural killer cell activation (NKa) in about 50% of cases and would need to be evaluated and addressed. Note: as indicated below, endometriosis in about 1/3 of cases (regardless of its severity is also associated with a similar IID.

    When women with infertility due to endometriosis seek treatment, they are all too often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this blog!
    Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.
    So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.
    So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:
    1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
    2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa). This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
    3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
    4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), iIncreasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy. The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

    I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.

    IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice. I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
    • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
    • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
    • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
    • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
    • Treating Ovarian Endometriomas with Sclerotherapy.
    • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options.
    • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
    • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s &
    • Induction of Ovulation With Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its ue
    • Clomiphene Induction of Ovulation: Its Use and Misuse!

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

    Kate Yonder - November 2, 2018 reply

    Dr, Sher;

    Thank you for your prompt, thorough response.

    You initially state that surgery is (most likely) not going to enhance my fertility treatment potential. Which surgery are you speaking of? The laparoscopy or the tubal ligation?

    If my thyroid is under control, currently TSH 1.59, would it still impact my fertility?

    Because we did an IVF, this would’ve avoided the toxic pelvic factor. Correct? But the IVF failed. Prior to the oocyte retrieval, I had 20 eggs. Nine eggs survived the retrieval. Six survived the first day, five the second, and on the third day, we had three eggs that were frozen (I had OHSS; level 17,000). When the embryos thawed, we had two left.

    Do you think we should attempt intralipid infusions and/or heparinoids?

    We have not decided if we want to go through with another IVF and my doctor is now suggesting a tubal ligation to improve my chances of a successful IVF (by reducing/eliminating possible toxins through suspected, but unconfirmed, tubal disease).

    I really appreciate your thoughts.

    Thanks so much,

    Kate

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 2, 2018

    Unless you have endometrioma’s, neither laparoscopic ablation of endometriotic lesions or freeing of adhesions not tubal ligation is indicated in my opinion. A normal TSH/nd T3/T4 does NOT preclude an underlying thyroid autoimmune condition with NK cell activation.

    More than half of women who have endometriosis harbor antiphospholipid antibodies (APA) that can compromise development of the embryo’s root system (trophoblast). In addition and far more serious, is the fact that in about one third of cases endometriosis, regardless of its severity is associated with NKa and cytotoxic uterine lymphocytes (CTL) which can seriously jeopardize implantation. This immunologic implantation dysfunction (IID) is diagnosed by testing the woman’s blood for APA, for NKa (using the K-562 target cell test or by endometrial biopsy for cytokine activity) and, for CTL (by a blood immunophenotype). Activated NK cells attack the invading trophoblast cells (developing “root system” of the embryo/early conceptus) as soon as it tries to gain attachment to the uterine wall. In most cases, this results in rejection of the embryo even before the pregnancy is diagnosed and sometimes, in a chemical pregnancy or an early miscarriage. As such, many women with endometriosis, rather than being infertile, in the strict sense of the word, often actually experience repeated undetected “mini-miscarriages”.
    Women who harbor APA’s often experience improved IVF birth rates when heparinoids (Clexane/Lovenox) are administered from the onset of ovarian stimulation with gonadotropins until the 10th week of pregnancy. NKa is treated with a combination of Intralipid (IL) and steroid therapy: Intralipid (IL) is a solution of small lipid droplets suspended in water. When administered intravenously, IL provides essential fatty acids, linoleic acid (LA), an omega-6 fatty acid, alpha-linolenic acid (ALA), an omega-3 fatty acid.IL is made up of 20% soybean oil/fatty acids (comprising linoleic acid, oleic acid, palmitic acid, linolenic acid and stearic acid) , 1.2% egg yolk phospholipids (1.2%), glycerin (2.25%) and water (76.5%).IL exerts a modulating effect on certain immune cellular mechanisms largely by down-regulating NKa.
    The therapeutic effect of IL/steroid therapy is likely due to an ability to suppress pro-inflammatory cellular (Type-1) cytokines such as interferon gamma and TNF-alpha. IL/steroids down-regulates NKa within 2-3 weeks of treatment the vast majority of women experiencing immunologic implantation dysfunction. In this regard IL is just as effective as Intravenous Gamma globulin (IVIg) but at a fraction of the cost and with a far lower incidence of side-effects. Its effect lasts for 4-9 weeks when administered in early pregnancy.
    The toxic pelvic environment caused by endometriosis, profoundly reduces natural fertilization potential. As a result normally ovulating infertile women with endometriosis and patent Fallopian tubes are much less likely to conceive naturally, or by using fertility agents alone (with or without intrauterine (IUI) insemination. The only effective way to bypass this adverse pelvic environment is through IVF. I am not suggesting here that all women who have endometriosis require IVF! Rather, I am saying that in cases where the condition is further compromised by an IID associated with NKa and/or for older women(over 35y) who have diminished ovarian reserve (DOR) where time is of the essence, it is my opinion that IVF is the treatment of choice.

    Geoff Sher

    Kate Yonder - November 3, 2018

    Dr. Sher,

    With all that you’ve shared, what should be my first step from here? Should I have certain tests performed (APA, NKa, and CTL) then await those results before proceeding? Will all fertility specialists know how to interpret the results from said tests? I am working with our third fertility specialist. It seems that your prescribed route is news to me and might be to my doctor as well.

    I am very interested in sclerotherapy. At present, I only have one endometrioma measuring 1 cm. But I had at least seven removed. Should this be addressed prior to the former in this thread?

    Thanks so much.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - November 3, 2018

    In my opinion you do need those immune tests but alas! not everyone knows how to interpret them. In my opinion, it is best to address the endometrioma in advance of an egg retrieval. It is not necessary in advance of a frozen transfer.

    Unless tests for immunologic implantation dysfunction (IID) are performed correctly and conducted by a one of the few reliable reproductive immunology reference laboratory in the United States, treatment will likely be unsuccessful. . In this regard it is most important that the right tests be ordered and that these be performed by a competent laboratory. There are in my opinion only a handful of reliable Reproductive Immunology Laboratories in the world and most are in the U.S.A. Also, it is my opinion that far too often, testing is inappropriate with the many redundant and incorrect tests being requested from and conducted by suboptimal laboratories. Finally for treatment to have the best chance of being successful, it is vital that the underlying type of IID (autoimmune IID versus alloimmune) be identified correctly and that the type, dosage, concentration and timing of treatments be carefully devised and implemented.
    Who Should Undergo IID testing?
    When it comes to who should be evaluated, the following conditions should in always raise a suspicion of an underlying IID, and trigger prompt testing:
    • A diagnosis of endometriosis or the existence of symptoms suggestive of endometriosis (heavy/painful menstruation and pain with ovulation or with deep penetration during intercourse) I would however emphasize that a definitive diagnosis of endometriosis requires visualization of the lesions at laparoscopy or laparotomy)
    • A personal or family history of autoimmune disease such as hyper/hypothyroidism (as those with elevated or depressed TSH blood levels, regardless of thyroid hormonal dysfunction), Lupus erythematosus, Rheumatoid arthritis, dermatomyositis, scleroderma etc.)
    • “Unexplained” infertility
    • Recurrent pregnancy loss (RPL)
    • A history of having miscarried a conceptus that, upon testing of products of conception, was found to have a normal numerical chromosomal configuration (euploid).
    • Unexplained IVF failure
    • “Unexplained” intrauterine growth retardation due to placental insufficiency or late pregnancy loss of a chromosomally normal baby
    What Parameters should be tested?
    In my opinion, too many Reproductive Immunologists unnecessarily unload a barrage of costly IID tests on unsuspecting patients. In most cases the initial test should be for NK cell activation, and only if this is positive, is it necessary to expand the testing.
    The parameters that require measurement include:
    o For Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or uterine cytokine measurement. As far as the ideal environment for performing such tests, it is important to recognize that currently there are only about 5 or 6, Reproductive Immunology Reference Laboratories in the U.S capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity (in my opinion).
    o For Alloimmune implantation Dysfunction: While alloimmune Implantation usually presents with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive started having repeated miscarriages it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in IID when there is concomitant NK/CTL activation (see elsewhere on this blog).
    How should results be interpreted?
    Central to making a diagnosis of an immunologic implantation dysfunction is the appropriate interpretation of natural killer cell activity (NKa) .In this regard, one of the commonest and most serious errors, is to regard the blood concentration of natural killer cells as being significant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. Then there is the interpretation of reported results. The most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In my opinion, trying to interpret the effect of adding IVIG or Intralipid to the sample in order assess whether and to what degree the use of these products would have a therapeutic benefit is seriously flawed and of little benefit. Clinically relevant NK cell deactivation can only be significantly effected in vivo and takes more than a week following infusion to occur. Thus what happens in the laboratory by adding these products to the sample prior to K-562 target cell testing is in my opinion likely irrelevant.
    There exists a pervasive but blatant misconception on the part of many, that the addition of Intralipid (IL) /immunoglobulin-G IVIG) can have an immediate down-regulatory effect on NK cell activity. This has established a demand that Reproductive Immunology Reference Laboratories report on NK cell activity before and following exposure to IVIG and/or IL. However, the fact is that activated “functional” NK cells (NKa) cannot be deactivated in the laboratory. Effective down-regulation of activated NK cells can only be adequately accomplished if their activated “progenitor/parental” NK cells are first down-regulated. Thereupon once these down-regulated “precursor” NK cells are exposed to progesterone, they will begin spawning normal and functional NK cells, which takes about 10-14 days. It follows that to assess for a therapeutic response to IVIG/IL therapy would require that the patient first be treated (10-14 days prior to embryo transfer) and thereupon, about 2 weeks later, be retested. While at 1st glance this might seem to be a reasonable approach, in reality it would be of little clinical benefit because even if blood were to be drawn 10 -14 days after IL/IVIG treatment it would require an additional 10 days to receive results from the laboratory, by which time it would be far too late to be of practical advantage.
    Neither IVIG nor IL is capable of significantly suppressing already activated “functional NK cells”. For this to happen, the IL/IVIG would have to down-regulate progenitor (parent) NK cell” activity. Thus, it should be infused 10-14 several prior to ovulation or progesterone administration so that the down-regulated “progenitor/precursor” NK cells” can propagate a sufficient number of normally regulated “functional NK cell” to be present at the implantation site 7 days later. In addition, to be effective, IL/IVIG therapy needs to be combined with steroid (dexamethasone/prednisone/prednisolone) therapy to down-regulates (often) concomitantly activated T-cells.
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!

    If you are interested in seeking my advice or services, I urge you to contact my concierge, Julie Dahan ASAP to set up a Skype or an in-person consultation with me. You can also contact Julie by phone or via email at 702-533-2691/ Julied@sherivf.com You can also apply online at http://www.SherIVF.com .

    *FYI
    The 4th edition of my newest book ,”In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com or from most bookstores and public libraries.

    Geoffrey Sher MD

  • Sarah - October 30, 2018 reply

    Hello,
    I have an AMH level of .48, 37 y/o, no endometriosis, no std’s, and no blockage in my Fallopian tubes. I have had 2 rounds of IVF, & 3 rounds of IUI. With each cycle, I had 5-6 follicles, with the help of gonadotropins. In the IVF cycles, I produced 3 mature eggs each. In one IUI cycle without gonadotropins, I only had 1 follicle, but the dr. went ahead with the procedure anyway.
    Is there a way to tell if my follicles are ‘empty’? I don’t understand why 4 of the 5 cycles produced 5-6 follicles, but I’ve had no success. I appreciate any advice you can provide.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    Frequently, when following vigorous and often repeated flushing of follicles at egg retrieval they fail to yield eggs, it is ascribed to “Empty Follicle Syndrome.” This is a gross misnomer, because all follicles contain eggs. So why were no eggs retrieved from the follicles? Most likely it was because they would/could not yield the eggs they harbored.
    This situation is most commonly seen in older women, women who have severely diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS). In my opinion it is often preventable when an optimal, individualized and strategic protocol for controlled ovarian stimulation (COS) is employed and the correct timing and dosage is applied to the “hCG trigger shot.”
    Normally, following optimal ovarian stimulation, the hCG “trigger shot” is given for the purpose of it triggering meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse, so that the egg can detach and readily be captured at egg retrieval (ER).
    Ordinarily, normal eggs (and even those with only one or two chromosomal irregularities) will readily detach and be captured with the very first attempt to empty a follicle. Eggs that have several chromosomal numerical abnormalities (i.e., are “complex aneuploid”) are often unable to facilitate this process. This explains why when the egg is complex aneuploid, its follicle will not yield an egg…and why, when it requires repeated flushing of a follicle to harvest an egg, it is highly suggestive of it being aneuploid and thus “incompetent” (i.e., incapable of subsequently propagating a normal embryo).
    Older women, women with diminished ovarian reserve, and those with polycystic ovarian syndrome, tend to have more biologically active LH in circulation. LH causes production of male hormone (androgens, predominantly testosterone), by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced ovogenesis (egg development). Too much LH activity compromises the latter, and eggs so affected are far more likely to be aneuploid following meiosis.
    Women with the above conditions have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the hCG trigger, leading to fruitless attempts at retrieval and the so called “empty follicle syndrome.”
    The developing eggs of women who have increased LH activity (older women, women with diminished ovarian reserve, and those with PCOS) are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Because of this, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole), drugs that contain LH or hCG (e.g., Menopur), or protocols of ovarian stimulation that provoke increased exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols”) and the use of “late pituitary blockade” (antagonist) protocols can be prejudicial.
    The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used, and the timing of its administration in such cases cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG (hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG can, by compromising meiosis, increase the risk of egg aneuploidy, and thus of IVF outcome.
    There is in my opinion no such condition as “Empty Follicle Syndrome.” All follicles contain eggs. Failure to access those eggs at ER can often be a result of the protocol used for controlled ovarian stimulation.

    In my opinion, against the backdrop of age and diminished ovarian reserve (DOR), the protocol used for ovarian stimulation is one of the most important drivers of egg “competence” (quality) and the number, yielded.
    Women who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.

    While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy

    Please visit my new Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
    • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • Traveling for IVF from Out of State/Country–
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • The Role of Nutritional Supplements in Preparing for IVF
    • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
    • IVF Egg Donation: A Comprehensive Overview

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Sophia - October 30, 2018 reply

    Hi Dr Sher,
    What is an acceptable amount of caffeine in your opinion for a woman who is trying to conceive? I love coffee and have 1-2 cups per day, but am also trying to improve my diet due to infertility. Do you think caffeine adversely affects egg quality?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    One or two cups of coffee per day is in my opinion, not excessive.

    Good luck!

    Geoff Sher

  • O. Sahin - October 30, 2018 reply

    dr sher i ask so much
    now i have a new question
    my beta hcg 8dpt 96 and than it doubled %80 every other day..
    15dpt betahcg 87
    today it is 22day past transfer and betahcg 3542
    doubling time 83hours
    two day increase %49
    is this normal after 22day
    or it is low beta hcg level
    6day blast FET.

    O. Sahin - October 30, 2018 reply

    15dpt betahcg not 87 it is 870 i wrote it down wrong

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    Copy!

    Geoff Sher

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    You need a confirming US now to establish viability of this pregnancy!

    Good luck!

    Geoff Sher

  • Anna - October 30, 2018 reply

    Hi Dr. Sher,
    My eggretrieval will be in the middle of January. Since two days, I am taking Letrozole (totally for 36 days) and in December, I will start with Nuvaring for one month before I start stimulation December, 31. From the middle of December I will also use Androgenpatches for 3 weeeks.

    I am not sure why I take Letrozole already now (it is in order to improve egg quality due my endometriosis (2 chocolate cysts which have a size of 18 mm) and why not doing this in December?

    Second question: My doctor told me I should not operate now my Endometriosis. Do you think those 2 chocolate cysts affect egg quality and especially my transfer?

    Thanks

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    Hoi Anna,

    Very respectfully, while there are differences of opinion, it is my firm opinion that endometriomas should be addressed surgically or by sclerotherapy well in advance of IVF. I believe that if this is not done, the affected ovary(ies) will produce poorer quality eggs, thereby compromising outcome.

    As for the prolonged use of Letrozole as described by you in you case, frankly, I have not got a clue as to why this is being proposed. Perhaps you should ask your RE for a full explanation.

    Endometriosis is a condition that occurs when the uterine lining (endometrium) grows not only in the interior of the uterus but in other areas, such as the fallopian tubes, ovaries and the bowel. Endometriosis is a complex condition where, the lack or relative absence of an overt anatomical barrier to fertility often belies the true extent of reproductive problem(s).
    All too often the view is expounded that the severity of endometriosis-related infertility is inevitably directly proportionate to the anatomical severity of the disease itself, thereby implying that endometriosis causes infertility primarily by virtue of creating anatomical barriers to fertilization. This over-simplistic and erroneous view is often used to support the performance of many unnecessary surgeries for the removal of small innocuous endometriotic lesions, on the basis of such “treatment” evoking an improvement in subsequent fertility.
    It is indisputable that even the mildest form of endometriosis can compromise fertility. It is equally true that, mild to moderate endometriosis is by no means a cause of absolute “sterility”.
    Rather, when compared with normally ovulating women of a similar age who do not have endometriosis, women with mild to moderate endometriosis are about four to six times less likely to have a successful pregnancy.
    Endometriosis often goes unnoticed for many years. Such patients are frequently, erroneously labeled as having “unexplained infertility”, until the diagnosis is finally clinched through direct visualization of the lesions at the time of laparoscopy or laparoscopy. Not surprisingly, many patients with so called “unexplained” infertility, if followed for a number of years, will ultimately reveal endometriosis.

    Women who have endometriosis are much more likely to be infertile. There are several reasons for this:

    • First-Ovulation Dysfunction: In about 25 – 30% of cases, endometriosis is associated with ovulation dysfunction. Treatment requires controlled ovarian stimulation (COS). The problem is that the toxic pelvic environment markedly reduces the likelihood that anything other than IVF will enhance pregnancy potential.
    • Second- Toxic Pelvic environment that compromises Fertilization Endometriosis is associated with the presence of toxins in peritoneal secretions while it is tempting to assert that normally ovulating women with mild to moderate endometriosis would have no difficulty in conceiving if their anatomical disease is addressed surgically or that endometriosis-related infertility is confined to cases with more severe anatomical disease…nothing could be further from the truth. The natural conception rate for healthy ovulating women in their early 30’s (who are free of endometriosis) is about 15% per month of trying and 70% per year of actively attempting to conceive. Conversely, the conception rate for women of a comparable age who have mild or moderate pelvic endometriosis (absent or limited anatomical disease) is about 5-6% per month and 40% after 3 years of trying. As sperm and egg(s) travel towards the fallopian tubes they are exposed to these toxins which compromise the fertilization process. In fact it has been estimated that there is a 5-6 fold reduction in fertilization potential because of these toxins which cannot be eradicated. Frankly, it really does not matter whether an attempt is made to remove endometriosis deposits surgically as this will not improve pregnancy potential. The reason is that for every deposit observed, there are numerous others that are in the process of developing and are not visible to the naked eye and whether visible or not, such translucent deposits still produce toxins. This also explains why surgery to remove visible endometriosis deposits, controlled ovarian stimulation with or without intrauterine insemination will usually not improve pregnancy potential. Only IVF, through removing eggs before they are exposed to the toxic pelvic environment, fertilizing them in-vitro and then transferring the embryos to the uterus represents the only way to enhance pregnancy potential.
    • Third-Pelvic adhesions and Scarring: In its most severe form, endometriosis is associated with scarring and adhesions in the pelvis, resulting in damage to, obstruction or fixation of the fallopian tubes to surrounding structures, thereby preventing the union of sperm and eggs.
    • Fourth-Ovarian Endometriomas, Advanced endometriosis is often associated with ovarian cysts (endometriomas/chocolate cysts) that are filled with altered blood and can be large and multiple. When these are sizable (>1cm) they can activate surrounding ovarian connective tissue causing production of excessive male hormones (androgens) such as testosterone and androstenedione. Excessive ovarian androgens can compromise egg development in the affected ovary (ies) resulting in an increased likelihood of numerical chromosomal abnormalities (aneuploidy) and reduced egg/embryo competency”. In my opinion large ovarian endometriomas need to be removed surgically or rough sclerotherapy before embarking on IVF.
    • Fifth- Immunologic Implantation Dysfunction (IID). Endometriosis, regardless of its severity is associated with immunologic implantation dysfunction linked to activation of uterine natural killer cells (NKa) and cytotoxic uterine lymphocytes (CTL) in about 30 of cases. This is diagnosed by testing the woman’s blood for NKa using the K-562 target cell test or by endometrial biopsy for cytokine analysis, and, for CTL by doing a blood immunophenotype. These NKa attack the invading trophoblast cells (developing “root system” of the embryo/early conceptus) as soon as it tries to gain attachment to the uterine wall. In most cases, this results in death of the embryo even before the pregnancy is diagnosed and sometimes, in a chemical pregnancy or even an early miscarriage. . As such, many women with endometriosis, rather than being infertile, in the strict sense of the word, often actually experience repeated undetected “mini-miscarriages”.

    Advanced Endometriosis: In its most advanced stage, anatomical disfiguration is causally linked to the infertility. In such cases, inspection at laparoscopy or laparoscopy will usually reveal severe pelvic adhesions, scarring and “chocolate cysts”. However, the quality of life of patients with advanced endometriosis is usually so severely compromised by pain and discomfort, that having a baby is often low on the priority list. Accordingly, such patients are usually often more interested in relatively radical medical and surgical treatment options (might preclude a subsequent pregnancy), such as removal of ovaries, fallopian pubis and even the uterus, as a means of alleviating suffering.

    Moderately Severe Endometriosis. These patients have a modest amount of scarring/ adhesions and endometriotic deposits which are usually detected on the ovaries, fallopian tubes, bladder surface and low in the pelvis, behind the uterus. In such cases, the fallopian tubes are usually opened and functional.

    Mild Endometriosis: These patients who at laparoscopy or laparotomy are found to have no significant distortion of pelvic anatomy are often erroneously labeled as having “unexplained” infertility. To hold that the there can only infertility can only be attributed to endometriosis if significant anatomical disease can be identified, is to ignore the fact that, biochemical, hormonal and immunological factors profoundly impact fertility. Failure to recognize this salient fact continues to play havoc with the hopes and dreams of many infertile endometriosis patients.

    TREATMENT:
    The following basic concepts apply to management of endometriosis-related infertility:

    1. Controlled Ovulation stimulation (COS) with/without intrauterine insemination (IUI): Toxins in the peritoneal secretions of women with endometriosis exert a negative effect on fertilization potential regardless of how sperm reaches the fallopian tubes. This helps explain why COS with or without IUI will usually not improve the chances of pregnancy (over no treatment at all) in women with endometriosis. IVF is the only way by which to bypass this problem.
    2. Laparoscopy or Laparotomy Surgery aimed at restoring the anatomical integrity of the fallopian tubes does not counter the negative influence of toxic peritoneal factors that inherently reduce the chances of conception in women with endometriosis four to six fold. Nor does it address the immunologic implantation dysfunction (IID) commonly associated with this condition. Pelvic surgery is relatively contraindicated for the treatment of infertility associated with endometriosis, when the woman is more than 35 years of age. With the pre-menopause approaching, such women do not have the time to waste on such less efficacious alternatives. In contrast, younger women who have time on their side might consider surgery as a viable option. Approximately 30 -40 percent of women under 35 years of age with endometriosis will conceive with in two to three years following corrective pelvic surgery.
    3. Sclerotherapy for ovarian endometriomas (“chocolate” cysts). About 15 years ago I introduced “sclerotherapy”, a relatively non-invasive, safe and effective outpatient method to permanently eliminate endometriomas without surgery being required. Sclerotherapy for ovarian endometriomas involves needle aspiration of the liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline into the cyst cavity. Treatment results in disappearance of the lesion within 6-8 weeks, in more than 75% of cases so treated. Ovarian sclerotherapy can be performed under local anesthesia or under general anesthesia. It has the advantage of being an ambulatory office- based procedure, at low cost, with a low incidence of significant post-procedural pain or complications and the avoidance of the need for laparoscopy or laparotomy
    4. The role of selective immunotherapy More than half of women who have endometriosis harbor antiphospholipid antibodies (APA) that can compromise development of the embryo’s root system (trophoblast). In addition and far more serious, is the fact that in about one third of cases endometriosis, regardless of its severity is associated with NKa and cytotoxic uterine lymphocytes (CTL) which can seriously jeopardize implantation. This immunologic implantation dysfunction (IID) is diagnosed by testing the woman’s blood for APA, for NKa (using the K-562 target cell test or by endometrial biopsy for cytokine activity) and, for CTL (by a blood immunophenotype). Activated NK cells attack the invading trophoblast cells (developing “root system” of the embryo/early conceptus) as soon as it tries to gain attachment to the uterine wall. In most cases, this results in rejection of the embryo even before the pregnancy is diagnosed and sometimes, in a chemical pregnancy or an early miscarriage. . As such, many women with endometriosis, rather than being infertile, in the strict sense of the word, often actually experience repeated undetected “mini-miscarriages”.

    Women who harbor APA’s often experience improved IVF birth rates when heparinoids (Clexane/Lovenox) are administered from the onset of ovarian stimulation with gonadotropins until the 10th week of pregnancy. NKa is treated with a combination of Intralipid (IL) and steroid therapy: Intralipid (IL) is a solution of small lipid droplets suspended in water. When administered intravenously, IL provides essential fatty acids, linoleic acid (LA), an omega-6 fatty acid, alpha-linolenic acid (ALA), an omega-3 fatty acid.IL is made up of 20% soybean oil/fatty acids (comprising linoleic acid, oleic acid, palmitic acid, linolenic acid and stearic acid) , 1.2% egg yolk phospholipids (1.2%), glycerin (2.25%) and water (76.5%).IL exerts a modulating effect on certain immune cellular mechanisms largely by down-regulating NKa.

    The therapeutic effect of IL/steroid therapy is likely due to an ability to suppress pro-inflammatory cellular (Type-1) cytokines such as interferon gamma and TNF-alpha. IL/steroids down-regulates NKa within 2-3 weeks of treatment the vast majority of women experiencing immunologic implantation dysfunction. In this regard IL is just as effective as Intravenous Gamma globulin (IVIg) but at a fraction of the cost and with a far lower incidence of side-effects. Its effect lasts for 4-9 weeks when administered in early pregnancy.
    5. The role of IVF: The toxic pelvic environment caused by endometriosis, profoundly reduces natural fertilization potential. As a result normally ovulating infertile women with endometriosis and patent Fallopian tubes are much less likely to conceive naturally, or by using fertility agents alone (with or without intrauterine (IUI) insemination. The only effective way to bypass this adverse pelvic environment is through IVF. I am not suggesting here that all women who have endometriosis require IVF! Rather, I am saying that in cases where the condition is further compromised by an IID associated with NKa and/or for older women(over 35y) who have diminished ovarian reserve (DOR) where time is of the essence, it is my opinion that IVF is the treatment of choice.

    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
    • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
    • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
    • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
    • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
    • Treating Ovarian Endometriomas with Sclerotherapy.
    • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options.
    • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
    • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s &
    • Induction of Ovulation With Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its ue
    • Clomiphene Induction of Ovulation: Its Use and Misuse!

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Betsy - October 29, 2018 reply

    Hello Dr Sher, I have hashimoto and take 125mg l-lythroxin, my levels have been controlled to below 3, but just jumped to 5 (I’ve been on BCP for 3 weeks in prep for FET so presuming they adversely affected?), have now upped dose to 150mg and have my FET end Nov, just wondering a) how you would treat high TSH and whether you think I’ll have enough time for it come come down to below 2 (recommend levels?) before FET and b) how to monitor effect estrofem may have on tsh levels when start, c) what protocol change you would make / add (intralipids?), thanks!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    The TSH level is only important if there is an abnormal T3/T4 level accompanying it. What is more important is to be sure that there is no immunologic implantation dysfunction associated.

    Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e. infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from of thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies.
    The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance.
    It follows, that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies.
    Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids, subsequently often results in a significant improvement in reproductive performance in such cases.
    The fact that almost 50% of women who harbor antithyroid antibodies do not have activated CTL/NK cells suggests that it is NOT the antithyroid antibodies themselves that cause reproductive dysfunction. The activation of CTL and NK cells that occurs in half of the cases with TAI is probably an epiphenomenon with the associated reproductive dysfunction being due to CTL/NK cell activation that damages the early “root system” (trophoblast) of the implanting embryo. We have shown that treatment of those women who have thyroid antibodies + NKa/CTL using IL/steroids, improves subsequent reproductive performance while women with thyroid antibodies who do not harbor NKa/CTL do not require or benefit from such treatment.

    Geoff sher

    Betsy - October 30, 2018 reply

    Hi Dr Sher, thanks for your reply below on thyroid issues….just a specific follow up Q; how do you decide on whether to use intralipids vs. IVIG…someone said for thyroid issues should avoid intralipids due to the soy and inflamatory aspect? But if I monitor TSH levels closely, and adjust l-thyroxin accordingly, intralipids (combined with clexane and steroids) are ok?? Thanks!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018 reply

    Respectfully as that p[ewrson who was among the 1st to ecer use IVIG (and later IL), I can tell you that in my opinion, that piece advice is erroneous. IL and IVIG are equally effective in cases of autoimmune hypothyroidism with an NKa+-related immunologic implantation dysfunction.

    The implantation process begins six or seven days after fertilization of the egg. At this time, specialized embryonic cells (i.e., the trophoblast), which later becomes the placenta; begin growing into the uterine lining. When the trophoblast and the uterine lining meet, they, along with Immune cells in the lining, become involved in a “cross talk” through mutual exchange of hormone-like substances called cytokines. Because of this complex immunologic interplay, the uterus is able to foster the embryo’s successful growth. Thus, from the very earliest stage of implantation the trophoblast establishes a foundation for the future nutritional, hormonal and respiratory interchange between mother and baby. In this manner, the interactive process of implantation is not only central to survival in early pregnancy but also to the quality of life after birth.

    Considering its importance, it is not surprising that failure of proper function of this immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. A partial list of immunologic factors that may be involved in these situations includes anti-phospholipid antibodies (APA), antithyroid antibodies (ATA), and most importantly activation of uterine natural killer cells (NKa). Presently, these immunologic markers in the blood can be only adequately measured by a handful of highly specialized reproductive immunology laboratories in the United States. I personally use Reproductive Immunology Associates in Van Nuys, CA or Reprosource in Boston, MA.

    The Central role of Natural Killer cells: After ovulation and during early pregnancy, NK cells comprise more than 70% of the immune cell population of the uterine lining. NK cells produce a variety of local hormones known cytokines. Uncontrolled, excessive release of certain cytokines (i.e. TH-1 cytokines) is highly toxic to the trophoblast (“root system”) of the embryo” leading to their programmed death (apoptosis) and, subsequently to failed or compromised/dysfunctional implantation. In the following situations NK cells become activated, and start to produce an excess of TH-1 cytokines:

    • Autoimmune Implantation Dysfunction: This is most commonly seen in association with a personal or family history of autoimmune diseases such as ith conditions such as Rheumatoid arthritis, hypothyroidism endometriosis and Lupus Erythematosus, Scleroderma, Dermatomyositis etc. It is also encountered in one third of women who have endometriosis (regardless of its severity), and in cases of “unexplained infertility” as well as with recurrent pregnancy loss (RPL).
    • Alloimmune implantation dysfunction where the male and female partners share specific genetic (DQ-alpha and/or HLA) similarities. This is commonly seen in cases of RPL and in cases of secondary infertility

    Activated NK cells (NKa) can be detected through the K-562 target cell blood test and (more recently) through uterine biopsy for TH-1 cytokine activity. Treatment involves selective use of Intralipid (IL) or immunoglobulin (IVIG) therapy combined with oral steroids, initiated more 10-14 days prior to embryo transfer and in most cases of alloimmune implantation dysfunction, the transfer of a single blastocyst at a time.

    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
    • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF.
    • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
    • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
    • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
    • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
    • Treating Ovarian Endometriomas with Sclerotherapy.
    • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options.
    • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
    • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s &
    • Induction of Ovulation With Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its ue
    • Clomiphene Induction of Ovulation: Its Use and Misuse!

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

    Betsy - October 30, 2018

    Thanks very much for your detailed reply! Q- is there a difference between using prednol or prednisone as steroid during fet and when do you advise using (only before or also after FET)? thanks

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018

    I recommend prednisone or dexamethasone.

    Geoff Sher

  • Maria - October 29, 2018 reply

    Hello Dr. Sher,

    I am about to start my 4th (yes, 4th) round of IVF. I am in my second marriage and with my first husband we were told it was male factor….

    IVF #1 (2012 29 years old): Menopur, orgalutran, 5000iu HCG, 12 eggs retrieved, 2 mature, sperm did not fertilize
    IVF #2 (2012 30 years old): Puregon, orgalutran, 5000iu HCG 13 eggs retrieved, 3 mature, sperm did not mature

    After my divorce i was in a relationship and naturally conceived twice, however, both were terminated.

    fast to July 2018 my husband and I have been trying since we married in September 2017.
    I went back to my original fertility clinic and he said he was very worried about this being an egg quality issue and said he would like to go straight into another round of IVF and if we still get immature eggs then there is nothing he can do and I would have to look into egg donor.

    IVF #3 (35 years old): luveris, orgalutran, 5000iu HCG 10 eggs retrieved, 1 fractured, 2 mature, 7 immature
    ***1 egg stopped dividing just before blastocyst and 1 made it to blast, was PGS tested and came back aneuploid. Doctor said he was very happy to see that my egg made it to blast because bad eggs don’t make it to blast. He said he now has hope after getting me this far and wants to try one more round and, again, switch the protocol in hopes of getting a few more mature eggs to work with. He said he definitely doesn’t want to look into egg donor as he knows I can get eggs to blastocyst. He assured me I did not need to take any supplements as he could tell the quality was fine if I got so far, sadly it was aneuploid.

    It gave me hope to hear that and knowing that I was able to conceive naturally, it made me feel better.

    Today, we met with him just before we start our 4th IVF round and it was almost as if he wasn’t as positive as he was at our follow up. my new protocol will be as follows:

    225iu repronex
    5mg letrozole CD 2-6
    orgalutran
    10,000iu HCG

    I asked him about upping up my HCG as I have done a ton of reading and read that can attribute to immature eggs. He said that was not true and said 5000iu was even too much for me (I was nowhere near OHSS) so not sure why he would say this. He said if this doesn’t work the this is clearly an egg quality issue and egg donor might be the route to go. I was startled that he changed his tune a bit and am coming to you some guidance in hopes you can give me some advise.

    I asked him about DHEA and he said no, that he doesn’t know how I will react and that it might get me 0 mature eggs.

    Please Dr. Sher, if you can help me in any way I would love some advise. I am feeling so frustrated, as I know I can get pregnant on my own.

    Thank you and I apologize for such a long post.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 29, 2018 reply

    Respectfully, I disagree with your RE. 5,000U for the hCG trigger is too low. You need 10,000U and in my opinion, this could , at least in part explain your egg/embryo quality/competency issue.

    Ideal egg development sets the scene for optimal egg maturation that occurs 36-42h prior to ovulation or egg retrieval. Without prior optimal egg development (ovogenesis), egg maturation will be dysfunctional and most eggs will be rendered “incompetent” and unable upon fertilization to propagate viable embryos. In IVF, optimal ovogenesis requires the selection and implementation of an individualized approach to controlled ovaria stimulation (COS). Thereupon, at the ideal time, maturational division of the egg’s chromosomes (i.e. meiosis) is “triggered” through the administration of hCG or an agonist such as Lupron, which induces an LH surge. The, dosage and timing of the “trigger shot” profoundly affects the efficiency of meiosis, the potential to yield “competent (euploid) mature (M2) eggs, and as such represents a rate limiting step in the IVF process .

    “Triggering meiosis with Urine-derived hCG (Pregnyl/Profasi/Novarel) versus recombinant hCG (Ovidrel): Until quite recently, the standard method used to “trigger” egg maturation was through the administration of 10,000 units of hCGu. Subsequently,, a DNA recombinant form of hCGr (Ovidrel)was introduced and marketed in 250 mcg doses. But clinical experience strongly suggests that 250 mcg of Ovidrel is most likely not equivalent in biological potency to 10,000 units of hCG. It probably only has 50%-70%of the potency of a 10,000U dose of hCGu and as such might not be sufficient to fully promote meiosis, especially in cases where the woman has numerous follicles. For this reason, I firmly believe that when hCGr is selected as the “trigger shot” the dosage should best be doubled to 500 mcg at which dosage it will probably have an equivalent effect on promoting meiosis as would 10,000 units of hCGu. Failure to “trigger” with 10,000U hCGu or 500mcg hCGr, will in my opinion increase the likelihood of disorderly meiosis, “incompetent (aneuploid) eggs” and the risk of follicles not yielding eggs at egg retrieval (“empty follicles”). Having said this, it is my personal opinion that it is unnecessary to supplant hCGu with hCGr since the latter is considerably more expensive and is probably no more biopotent than the latter.

    Some clinicians, when faced with a risk of OHSS developing will deliberately elect to reduce the dosage of hCG administered as a trigger in the hope that by doing so the risk of critical OHSS developing will be lowered. It is my opinion, that such an approach is not optimal because a low dose of hCG (e.g., 5000 units, hCGu or 250mcg hCGr) is likely inadequate to optimize the efficiency of meiosis particularly when it comes to cases such as this where there are numerous follicles. It has been suggested that the preferential use of an “agonist (Lupron) trigger” in women at risk of developing severe ovarian hyperstimulation syndrome could potentially reduce the risk of the condition becoming critical and thereby placing the woman at risk of developing life-endangering complications. It is with this in mind that many RE’s prefer to trigger meiosis by way of an “agonist (Lupron) trigger rather than through the use of hCG. The agonist promptly causes the woman’s pituitary gland to expunge a large amount of LH over a short period of time and it is this LH “surge” that triggers meiosis. The problem with using this approach, in my opinion, is that it is hard to predict how much LH will be released in by the pituitary gland. For this reason, I personally prefer to use hCGu for the trigger, even in cases of ovarian hyperstimulation hyperstimulated, with one important proviso…that being that is she underwent “prolonged coasting” in order to reduce the risk of critical OHSS, prior to the 10,000 unit hCGu “ trigger”.

    The timing of the “trigger shot “to initiate meiosis: This should coincide with the majority of ovarian follicles being >15 mm in mean diameter with several follicles having reached 18-22 mm. Follicles of larger than 22 mm will usually harbor overdeveloped eggs which in turn will usually fail to produce good quality eggs. Conversely, follicles less than 15 mm will usually harbor underdeveloped eggs that are more likely to be aneuploid and incompetent following the “trigger”.

    The potential for a woman’s eggs to undergo orderly development and maturation, while in large part being genetically determined can be profoundly influenced by the woman’s age, her “ovarian reserve” and proximity to menopause. It is also influenced by the protocol used for controlled ovarian stimulation (COH) which by fashioning the intra-ovarian hormonal environment, profoundly impacts egg development and maturation.
    After the menarche (age at which menstruation starts) a monthly process of repeatedly processing eggs continues until the menopause, by which time most eggs will have been used up, and ovulation and menstruation cease. When the number of eggs remaining in the ovaries falls below a certain threshold, ovarian function starts to wane over a 5 to10-years. This time period is referred to as the climacteric. With the onset of the climacteric, blood Follicle Stimulating Hormone (FSH) and later also Luteinizing Hormone (LH) levels begin to rise…. at first slowly and then more rapidly, ultimately culminating in the complete cessation of ovulation and menstruation (i.e. menopause).
    One of the early indications that the woman has entered the climacteric and that ovarian reserve is diminishing DOR) , is the detection of a basal blood FSH level above 9.0 MIU/ml and/ or an AMH level og <2.0ng/ml.
    Prior to the changes that immediately precede ovulation, virtually all human eggs have 23 pairs (i.e. 46) of chromosomes. Thirty six to forty hours prior to ovulation, a surge occurs in the release of LH by the pituitary gland. One of the main e purposes of this LH surge is to cause the chromosomes in the egg to divide n half (to 23 in number) in order that once fertilized by a mature sperm ends up having 23 chromosomes) the resulting embryo will be back to having 46 chromosomes. A “competent” mature egg is one that has precisely 23 chromosomes, not any more or any less. It is largely the egg, rather than the sperm that determines the chromosomal integrity of the embryo and only an embryo that has a normal component of 46 chromosomes (i.e. euploid) is “competent” to develop into a healthy baby. If for any reason the final number of chromosomes in the egg is less or more than 23 (aneuploid), it will be incapable of propagating a euploid, “competent” embryo. Thus egg/embryo aneuploidy (“incompetence”) is the leading cause of human reproductive dysfunction which can manifest as: arrested embryo development and/or failed implantation (which often presents as infertility), early miscarriage or chromosomal birth defects (e.g. Down’s syndrome). While most aneuploid (“incompetent”) embryos often fail to produce a pregnancy, some do. However, most such pregnancies miscarry early on. On relatively rare occasions, depending on the chromosome pair involved, aneuploid embryos can develop into chromosomally defective babies (e.g. Down’s syndrome).

    Up until a woman reaches her mid- thirties, at best, 1:2 of her eggs will likely be chromosomally normal. As she ages beyond her mid-thirties there will be a a progressive decline in egg quality such that by age 40 years only about 15%-20% of eggs are euploid and, by the time the woman reaches her mid-forties, less than 10% of her eggs are likely to be chromosomally normal. While most aneuploid embryos do appear to be microscopically abnormal under the light microscope, this is not invariably so. In fact, many aneuploid embryos a have a perfectly normal appearance under the microscope. This is why it is not possible to reliably differentiate between competent and incompetent embryos on the basis of their microscopic appearance (morphologic grade) alone.

    The process of natural selection usually precludes most aneuploid embryos from attaching to the uterine lining. Those that do attach usually do so for such only a brief period of time. In such cases the woman often will not even experience a postponement of menstruation. There will be a transient rise in blood hCG levels but in most cases the woman will be unaware of even having conceived (i.e. a “chemical pregnancy”). Alternatively, an aneuploid embryo might attach for a period of a few weeks before being expelled (i.e. a “miscarriage”). Sometimes (fortunately rarely) an aneuploid embryo will develop into a viable baby that is born with a chromosomal birth defect (e.g. Down’s syndrome).
    The fact that the incidence of embryo aneuploidy invariably increases with advancing age serves to explain why reproductive failure (“infertility”, miscarriages and birth defects), also increases as women get older.

    It is an over-simplification to represent that diminishing ovarian reserve as evidenced by raised FSH blood levels (and other tests) and reduced response to stimulation with fertility drugs is a direct cause of “poor egg/ embryo quality”. This common misconception stems from the fact that poor embryo quality (“incompetence”) often occurs in women who at the same time, because of the advent of the climacteric also have elevated basal blood FSH/LH levels and reduced AMH. But it is not the elevation in FSH or the low AMH that causes embryo “incompetence”. Rather it is the effect of advancing age (the “biological clock”) resulting a progressive increase in the incidence of egg aneuploidy, which is responsible for declining egg quality. Simply stated, as women get older “wear and tear” on their eggs increases the likelihood of egg and thus embryo aneuploidy. It just so happens that the two precipitating factors often go hand in hand.

    The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by those IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome in patients at risk – particularly those with diminished ovarian reserve (“poor responders”) and those who are “high responders” (women with PCOS , those with dysfunctional or absent ovulation, and young women under 25 years of age).
    While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
    During the normal ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone) that are produced by the ovarian stroma (the tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (cells that line the inner walls of follicles), and egg maturation.
    However, over-production of testosterone can adversely influence the same processes. It follows that protocols for controlled ovarian stimulation (COS should be geared toward optimizing follicle growth and development (without placing the woman at risk from overstimulation), while at the same time avoiding excessive ovarian androgen production. Achievement of such objectives requires a very individualized approach to choosing the protocol for COS with fertility drugs as well as the precise timing of the “trigger shot” of hCG.

    It is important to recognize that the pituitary gonadotropins, LH and FSH, while both playing a pivotal role in follicle development, have different primary sites of action in the ovary. The action of FSH is mainly directed towards the cells lining the inside of the follicle that are responsible for estrogen production. LH, on the other hand, acts primarily on the ovarian stroma to produce male hormones/ androgens (e.g. androstenedione and testosterone). A small amount of testosterone is necessary for optimal estrogen production. Over-production of such androgens can have a deleterious effect on granulosa cell activity, follicle growth/development, egg maturation, fertilization potential and subsequent embryo quality. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

    In conditions such as polycystic ovarian syndrome (PCOS), which is characterized by increased blood LH levels, there is also increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often a feature of this condition. The use of LH-containing preparations such as Menopur further aggravates this effect. Thus we recommend using FSH-dominant products such as Follistim, Puregon, and Gonal-F in such cases. While it would seem prudent to limit LH exposure in all cases of COS, this appears to be more vital in older women, who tend to be more sensitive to LH

    It is common practice to administer gonadotropin releasing hormone agonists (GnRHa) agonists such as Lupron, and, GnRH-antagonists such as Ganirelix and Orgalutron to prevent the release of LH during COS. GnRH agonists exert their LH-lowering effect over a number of days. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in the LH level falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. GnRH Antagonists, on the other hand, act very rapidly (within a few hours) to block pituitary LH release, so as achieve the same effect.

    Long Agonist (Lupron/Buserelin) Protocols: The most commonly prescribed protocol for Lupron/gonadotropin administration is the so-called “long protocol”. Here, Lupron is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH level, which is rapidly followed by a precipitous fall to near zero. It is followed by uterine withdrawal bleeding (menstruation), whereupon gonadotropin treatment is initiated while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the long protocol which I prefer using in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a Lupron-induced bleed , this agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I supplement with human growth hormone (HGH) to try and further enhance response and egg development.

    Lupron Flare/Micro-Flare Protocol: Another approach to COS is by way of so-called “(micro) flare protocols”. This involves initiating gonadotropin therapy simultaneous with the administration of GnRH agonist (e.g. Lupron/Buserelin). The intent here is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” represents “a double edged sword” because while it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal androgen production which could potentially compromise egg quality, especially in older women and women with PCOS, whose ovaries have increased sensitivity to LH. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe them at all.

    Estrogen Priming – My approach for “Poor Responders” Our patients who have demonstrated reduced ovarian response to COS as well as those who by way of significantly raised FSH blood levels are likely to be “poor responders”, are treated using a “modified” long protocol. The approach involves the initial administration of GnRH agonist for a number of days to cause pituitary down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, the dosage of GnRH agonist is drastically lowered and the woman is given twice-weekly injections of estradiol for a period of 8. COS is thereupon initiated using a relatively high dosage of FSH-(Follistim, Bravelle, Puregon or Gonal F) which is continued along with daily administration of GnRH agonist until the “hCG trigger.” By this approach we have been able to significantly improve ovarian response to gonadotropins in many of hitherto “resistant patients”.
    The “Trigger”: hCG (Profasi/Pregnyl/Novarel) versus Lupron: With ovulation induction using fertility drugs, the administration of 10,000U hCGu (the hCG “trigger”) mimics the LH surge, sending the eggs (which up to that point are immature (M1) and have 46 chromosomes) into maturational division (meiosis) This process is designed to halve the chromosome number , resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes it had prior to the “trigger”. Such a chromosomally normal, M2 egg, upon being fertilized by mature sperm (that following maturational division also has 23 chromosomes) will hopefully propagate embryos that have 46 chromosomes and will be “:competent” to propagate viable pregnancies. The key is to trigger with no less than 10,000U of hCGu (Profasi/Novarel/Pregnyl) and if hCGr (Ovidrel) is used, to make sure that 500mcg (rather than 250mcg) is administered. In my opinion, any lesser dosage will reduce the efficiency of meiosis, and increase the risk of the eggs being chromosomally abnormal. . I also do not use the agonist (Lupron) “trigger”. This approach which is often recommended for women at risk of overstimulation, is intended to reduce the risk of OHSS. The reason for using the Lupron trigger is that by inducing a surge in the release of LH by the pituitary gland it reduces the risk of OHSS. This is true, but this comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the percentage of chromosomally abnormal and of immature (M1) eggs. The use of “coasting” in such cases) can obviate this effect
    .
    I strongly recommend that you visit www. SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
    • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
    • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
    • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
    • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
    • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Staggered IVF
    • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
    • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
    • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
    • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
    • IVF: Selecting the Best Quality Embryos to Transfer
    • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
    • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
    • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
    • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

    Maria - October 29, 2018 reply

    Thank you so much for your quick response Dr. Sher!

    I asked about all of my levels (FSH, AMH, AFC, etc) and he said everything looked great, no issues with any of those numbers so he knows I will be able to get at least 10 or more eggs.

    He said he will be putting me on a more “old school” protocol in hopes of getting more mature eggs. Is there a certain HCG shot that is better for me to take?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 29, 2018 reply

    I would use either 10,000U of Pregnyl/Profasi/Novaralel or 500mcg of Ovidrel for the trigger.

    Good luck!

    Geoff Sher

    Britt - October 29, 2018 reply

    Hi Dr Sher.
    I am 42.5 years old with one 3 year old. My husband is 31 years old with no issues. We are going for our first IVF. I have great numbers for my age (FSH 8, AMH 2.25, AFC 30+). I did an IUI with 7.5 mg letrozol as well as 75ius of gonal f starting on day 6. We had 7 eggs, so we cancelled IUI and tried naturally. I got pregnant with twins but lost them both at 6 weeks.

    We are now doing our first round of IVF with PGS testing. My dr wants me on 7.5 mg letrozol, 300IU gonal F and 75 IUs of Menopur (originally he wanted me at 150). I am afraid that this is too high of a dose and I am worried about egg quality. He wants more eggs for genetic testing, but I don’t want to come out with a large amount and nothing to test. Please help.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 29, 2018 reply

    Very respectfully,

    I am not a fan of Letrozole in IVF. I would also suggest PGS testing of all embryos and tghe selective transfer in a subsequent cycle, of no more than 2 PGS-normal blastocysts.

    If no PGS is done then I recommend the following:

    My advice is to use a long pituitary down regulation protocol starting on a BCP, and overlapping it with Lupron 10U daily for three (3) days and then stopping the BCP but continuing on Lupron 10u daily (in my opinion 20U daily is too much) and await a period (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst and simultaneously, the Lupron dosage is reduced to 5U daily to be continued until the hCG (10,000u) trigger. An FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is started with the period for 2 days and then the gonadotropin dosage is reduced and a small amount of menotropin (Menopur—no more than 75U daily) is added. This is continued until US and blood estradiol levels indicate that the hCG trigger be given, whereupon an ER is done 36h later. I personally would advise against using Lupron in “flare protocol” arrangement (where the Lupron commences with the onset of gonadotropin administration.
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements For Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
    • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
    • A personalized, stepwise approach to IVF
    • “Triggering” Egg Maturation in IVF: Comparing urine-derived hCG, Recombinant DNA-hCG and GnRH-agonist:
    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Maria - October 29, 2018 reply

    Hi again Dr. Sher,
    I just read your comment and notcied you are not a fan of letrezole…. any specific reason?
    My RE has ordered me to take 5mg of letrezole CD 2-6 along with the 225ml of repronex. As you can see, I am really worried about another cycle of immature eggs, naturally so.

    Thank you!

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 30, 2018

    It increases LH and this in turn can increase ovarian testosterone which (especially in older women and those with DOR) can adversely impact egg development can in my opinion advesely affect egg quality.

    Geoff Sher

  • Ashley childress - October 28, 2018 reply

    Dr. Sher,
    I’ve had two early miscarriages with normal embryos. One at 5.5 weeks and one after I had an ERA and it was a chemical. I’ve had normal HSG and hysteroscopy and the reason we are doing IVF is for male factor. My recent blood work came back positive for lupus anticoagulant and homozygous for mthfr. Doctor is going to repeat the test for lupus anticoagulant. Should I move on to surrogacy? I have 2 embryos left.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 29, 2018 reply

    It is likely that you have an implantation dysfunction (anatomical or immunologic). However see below:

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Kris - October 28, 2018 reply

    Hi Dr Sher,
    Is it beneficial taking breaks between ivfs if you have DOR or are back to backs acceptable? Be done 3 full stim since August 2017 and just completed three mini ivfs. I’m 38 and keen to keep going but will take a break if beneficial.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 29, 2018 reply

    In general, it is always a good idea to give your ovaries at least a 1 month break between cycles.

    Geoff Sher

  • Melissa Gtrant - October 28, 2018 reply

    This isn’t an IVF question, but related (IUI). How does is the use of Ovidrel effective when administered AFTER the lh surge is detected? I’m also finding it hard to figure out best timing, I know 36 hours after trigger shot is ideal, but because the shot is only given after I am surging I don’t understand how that affects things?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 29, 2018 reply

    Respectfully Melisa,

    In my opinion, giving Ovidrel (recombinant hCG) after the LH surge is in my opinion redundant.

    Geoff Sher

  • Kasey - October 27, 2018 reply

    Hi Dr. Sher,
    My husband and I have currently undergone 2 complete ivf cycles, with 2 fresh transfers. The first transfer was unsuccessful and the 2nd one we became pregnant with twins that passed away while I was 24 wks along because of a placental abruption. We just underwent a fet with a very good( what our clinic considered good) embryo. Unfortunately that ended in a miscarriage. I’ve been pregnant on my own 3 times which have all ended in miscarriage. I have endometriosis, but other than that, unexplained infertility with low amh. We have 3 frozens left and are just tired. We have already spent over $50k for 7 iui’s, 2 full ivf’s, and 1 fet. We are thinking about switching clinics and are interested in yours. Does this sound like a challenge you are up for?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 28, 2018 reply

    I obviously cannot say with any confidence that I can resolve your issues. However, I certainly feel that you should be thoroughly evaluated for an implantation dysfunction before proceeding any further and I certainly am confident in saying that I can and would be able to effect this fore you.

    Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
    It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
    1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
    2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
    We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about a decade ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
    3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.
    4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:
    a. A“ thin uterine lining”
    b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
    c. Immunologic implantation dysfunction (IID)
    d. Endocrine/molecular endometrial receptivity issues
    Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
    I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

    • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
    • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
    • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
    • The Fundamental Requirements for Achieving Optimal IVF Success
    • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
    • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
    • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
    • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
    • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
    • Blastocyst Embryo Transfers should be the Standard of Care in IVF
    • IVF: How Many Attempts should be considered before Stopping?
    • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
    • IVF Failure and Implantation Dysfunction:
    • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
    • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
    • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
    • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
    • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
    • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
    • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
    • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
    • Endometrial Thickness, Uterine Pathology and Immunologic Factors
    • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
    • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
    • A personalized, stepwise approach to IVF
    • How Many Embryos should be transferred: A Critical Decision in IVF?
    • The Role of Nutritional Supplements in Preparing for IVF

    If you are interested in my advice or medical services, I urge you to contact my patient concierge, ASAP to set up a Skype or an in-person consultation with me. You can also set this up by emailing concierge@sherivf.com or by calling 702-533-2691 and/or 800-780-743. You can also enroll for a consultation with me, online at http://www.SherIVF.com.
    Also, my book, “In Vitro Fertilization, the ART of Making Babies” is available as a down-load through http://www.Amazon.com .

    Geoffrey Sher MD

  • Maribelle Smith - October 26, 2018 reply

    Hi Dr. 43 – no fertility issues – started child planning late in life. 2nd iVF , 3 day fresh egg transfer on 10/11/18.
    First HCG on 10/19/18 : 19
    2nd HCG on 10/26/18 ; 105
    Is this normal. My Dr. seemed a bit wary. She was hoping this would be higher. I thought it was normal…Is this normal rate? or should it be much higher?

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 26, 2018 reply

    The rise in hCG is somewhat slow. But there is hope. Good luck!

    Geoff Sher

  • Sterling - October 26, 2018 reply

    Hi Dr. Sher,

    I currently have 2 frozen day 7 embryos that tested PGS normal. What in your opinion is the chance/percentage of implantation compared to a day 5/6 embryo? I am debating on whether to transfer 1 or 2. I will be doing a natural transfer cycle.

    Dr. Geoffrey Sher

    Dr. Geoffrey Sher - October 26, 2018 reply

    Respectfully Sterling, I don’t hold out much hope for day-7 embryos, regardless of their PGS-status.

    Sorry!

    Geoff Sher

Ask a question or post a comment