Ask Dr. Sher- Open Forum

dr geoffrey sher ivf infertility You are not alone. Dr. Sher is here to answer your questions and support you.

If you would like to schedule a one on one online consultation, telephone, or in person consultation with Dr. Sher, please fill out the form on the right and our team will get you scheduled right away.

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Ask a question or post a comment

 

24,734 Comments

Alena

Dear Dr Sher,

My friend’s two daughters have Premature Ovarian Failure following HPV vaccine. They are now 25 and 27 years old. I was wondering if you could recommend a clinic/doctor who specializes in IVF for this condition here in the US or abroad? And in general what your recommendations would be to them?

God bless!

reply
Dr. Geoffrey Sher

I do!

Have your friends conact Patti Converse (my assistant) at 702-533-2691 and set up an online consultation to discuss.

Geoff Sher

reply
Sophia

Sorry for the multiple posts, but my oestrogen level after 12 days of injection and suppositories was 1205 pg/mL. And my lining Refuses to grow past 6.3 mm. Could this high level of oestrogen be adversely affecting my uterine lining?

reply
Dr. Geoffrey Sher

No!

It was as far back as 1989, when I first published a study that examined the correlation between the thickness of a woman’s uterine lining (the endometrium), and the subsequent successful implantation of embryos in IVF patients. This study revealed that when the uterine lining measured <8mm in thickness by the day of the “hCG trigger” (in fresh IVF cycles), or at the time of initiating progesterone therapy (in embryo recipient cycles, e.g. frozen embryo transfers-FET, egg donation-IVF etc.) , pregnancy and birth rates were substantially improved. Currently, it is my opinion, that an ideal estrogen-promoted endometrial lining should ideally measure at least 9mm in thickness and that an endometrial lining measuring 8-9mm is “intermediate”. An estrogenic lining of <8mm is in most cases unlikely to yield a viable pregnancy.

A “poor” uterine lining is usually the result of the innermost layer of endometrium (the basal or germinal endometrium from which endometrium grows) ) not being able to respond to estrogen by propagating an outer, “functional” layer thick enough to support optimal embryo implantation and development of a healthy placenta (placentation). The “functional” layer ultimately comprises 2/3 of the full endometrial thickness and is the layer that sheds with menstruation in the event that no pregnancy occurs.

The main causes of a “poor” uterine lining are:

1. Damage to the basal endometrium as a result of:
a. Inflammation of the endometrium (endometritis) most commonly resulting from infected products left over following abortion, miscarriage or birth
b. Surgical trauma due to traumatic uterine scraping, (i.e. due to an over-aggressive D & C)
2. Insensitivity of the basal endometrium to estrogen due to:
a. Prolonged , over-use/misuse of clomiphene citrate
b. Prenatal exposure to diethylstilbestrol (DES). This is a drug that was given to pregnant women in the 1960’s to help prevent miscarriage
3. Over-exposure of the uterine lining to ovarian male hormones (mainly testosterone): Older women, women with diminished ovarian reserve (poor responders) and women with polycystic ovarian syndrome -PCOS tend to have raised LH biological activity.. This causes the connective tissue in the ovary (stroma/theca) to overproduce testosterone. The effect can be further exaggerated when certain methods for ovarian stimulation such as agonist (Lupron/Buserelin) “flare” protocols and high dosages of menotropins such as Menopur are used in such cases.
4. Reduced blood flow to the basal endometrium:
Examples include;
a. Multiple uterine fibroids - especially when these are present under the endometrium (submucosal)
b. Uterine adenomyosis (excessive, abnormal invasion of the uterine muscle by endometrial glands).

“The Viagra Connection”

Eighteen years ago years ago, after reporting on the benefit of vaginal Sildenafil (Viagra) for to women who had implantation dysfunction due to thin endometrial linings I was proud to announce the birth of the world’s first “Viagra baby.” Since the introduction of this form of treatment, thousands of women with thin uterine linings have been reported treated and many have gone on to have babies after repeated prior IVF failure.

For those of you who aren’t familiar with the use of Viagra in IVF, allow me to provide some context. It was in the 90’s that Sildenafil (brand named Viagra) started gaining popularity as a treatment for erectile dysfunction. The mechanism by which it acted was through increasing penile blood flow through increasing nitric oxide activity. This prompted me to investigate whether Viagra administered vaginally, might similarly improve uterine blood flow and in the process cause more estrogen to be delivered to the basal endometrium and thereby increase endometrial thickening. We found that when Viagra was administered vaginally it did just that! However oral administration was without any significant benefit in this regard. We enlisted the services of a compound pharmacy to produce vaginal Viagra suppositories. Initially, four (4) women with chronic histories of poor endometrial development and failure to conceive following several advanced fertility treatments were evaluated for a period of 4-6 weeks and then underwent IVF with concomitant Viagra therapy. Viagra suppositories were administered four times daily for 8-11 days and were discontinued 5-7 days prior to embryo transfer in all cases.

Our findings clearly demonstrated that vaginal Viagra produced a rapid and profound improvement in uterine blood flow and that was followed by enhanced endometrial development in all four cases. Three (3) of the four women subsequently conceived. I expanded the trial in 2002 and became the first to report on the administration of vaginal Viagra to 105 women with repeated IVF failure due to persistently thin endometrial linings. All of the women had experienced at least two (2) prior IVF failures attributed to intractably thin uterine linings. About 70% of these women responded to treatment with Viagra suppositories with a marked improvement in endometrial thickness. Forty five percent (45%) achieved live births following a single cycle of IVF treatment with Viagra The miscarriage rate was 9%. None of the women who had failed to show an improvement in endometrial thickness following Viagra treatment achieved viable pregnancies.

Following vaginal administration, Viagra is rapidly absorbed and quickly reaches the uterine blood system in high concentrations. Thereupon it dilutes out as it is absorbed into the systemic circulation. This probably explains why treatment is virtually devoid of systemic side effects

It is important to recognize that Viagra will NOT be effective in improving endometrial thickness in all cases. In fact, about 30%-40% of women treated fail to show any improvement. This is because in certain cases of thin uterine linings, the basal endometrium will have been permanently damaged and left unresponsive to estrogen. This happens in cases of severe endometrial damage due mainly to post-pregnancy endometritis (inflammation), chronic granulomatous inflammation due to uterine tuberculosis (hardly ever seen in the United States) and following extensive surgical injury to the basal endometrium (as sometimes occurs following over-zealous D&C’s).

Combining vaginal Viagra Therapy with oral Terbutaline;
In my practice I sometimes recommend combining Viagra administration with 5mg of oral terbutaline. The Viagra relaxes the muscle walls of uterine spiral arteries that feed the basal (germinal) layer of the endometrium while Terbutaline, relaxes the uterine muscle through which these spiral arteries pass. The combination of these two medications interacts synergistically to maximally enhance blood flow through the uterus, thereby improving estrogen delivery to the endometrial lining. The only drawback in using Terbutaline is that some women experience agitation, tremors and palpitations. In such cases the terbutaline should be discontinued. Terbutaline should also not be used women who have cardiac disease or in those who have an irregular heartbeat.

About 75% of women with thin uterine linings see a positive response to treatment within 2-3 days. The ones that do not respond well to this treatment are those who have severely damaged inner (basal/germinal) endometrial linings, such that no improvement in uterine blood flow can coax an improved response. Such cases are most commonly the result of prior pregnancy-related endometrial inflammation (endometritis) that sometimes occurs post abortally or following infected vaginal and/or cesarean delivery.

Viagra therapy has proven to be a god send to thousands of woman who because of a thin uterine lining would otherwise never have been able to successfully complete the journey “from infertility to family”.

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sophia

Hi Dr SHER,
How would you assess a resistant uterine lining that does not respond well despite high doses of estrogen and viagra? I’m on estradiol valerate injections every other day, estrogen suppositories and vaginal viagra twice daily. My lining stays stagnant at 6.3mm after one week; started off at 3.8mm. I’ve had hysteroscopy two months ago that was normal. My lining has always been slow growing but never stayed stagnant. What could cause this and what would you treat with?

reply
Dr. Geoffrey Sher

This almost always means that there is an intractable lack of response of the basal (germinal) endometrium to estrogen. This can result from previous 1.) inflammation (usually due to previous retained products of conception (post-abortal; post delivery) 2. surgical damage (post-over-zealous D&C or dissection/resection, or 3) lack of endometrial estrogen receptor response (e,g after prolonged use of clomiphene, prolonged estreogen deprivation or prenatal exposure to diethylstibestrol-DES (very seldome).

Numbers 1 & 2 (above) can in most cases NOT be reversed…requiring gestational surrogacy.

It was as far back as 1989, when I first published a study that examined the correlation between the thickness of a woman’s uterine lining (the endometrium), and the subsequent successful implantation of embryos in IVF patients. This study revealed that when the uterine lining measured <8mm in thickness by the day of the “hCG trigger” (in fresh IVF cycles), or at the time of initiating progesterone therapy (in embryo recipient cycles, e.g. frozen embryo transfers-FET, egg donation-IVF etc.) , pregnancy and birth rates were substantially improved. Currently, it is my opinion, that an ideal estrogen-promoted endometrial lining should ideally measure at least 9mm in thickness and that an endometrial lining measuring 8-9mm is “intermediate”. An estrogenic lining of <8mm is in most cases unlikely to yield a viable pregnancy.

A “poor” uterine lining is usually the result of the innermost layer of endometrium (the basal or germinal endometrium from which endometrium grows) ) not being able to respond to estrogen by propagating an outer, “functional” layer thick enough to support optimal embryo implantation and development of a healthy placenta (placentation). The “functional” layer ultimately comprises 2/3 of the full endometrial thickness and is the layer that sheds with menstruation in the event that no pregnancy occurs.

The main causes of a “poor” uterine lining are:

1. Damage to the basal endometrium as a result of:
a. Inflammation of the endometrium (endometritis) most commonly resulting from infected products left over following abortion, miscarriage or birth
b. Surgical trauma due to traumatic uterine scraping, (i.e. due to an over-aggressive D & C)
2. Insensitivity of the basal endometrium to estrogen due to:
a. Prolonged , over-use/misuse of clomiphene citrate
b. Prenatal exposure to diethylstilbestrol (DES). This is a drug that was given to pregnant women in the 1960’s to help prevent miscarriage
3. Over-exposure of the uterine lining to ovarian male hormones (mainly testosterone): Older women, women with diminished ovarian reserve (poor responders) and women with polycystic ovarian syndrome -PCOS tend to have raised LH biological activity.. This causes the connective tissue in the ovary (stroma/theca) to overproduce testosterone. The effect can be further exaggerated when certain methods for ovarian stimulation such as agonist (Lupron/Buserelin) “flare” protocols and high dosages of menotropins such as Menopur are used in such cases.
4. Reduced blood flow to the basal endometrium:
Examples include;
a. Multiple uterine fibroids - especially when these are present under the endometrium (submucosal)
b. Uterine adenomyosis (excessive, abnormal invasion of the uterine muscle by endometrial glands).

“The Viagra Connection”

Eighteen years ago years ago, after reporting on the benefit of vaginal Sildenafil (Viagra) for to women who had implantation dysfunction due to thin endometrial linings I was proud to announce the birth of the world’s first “Viagra baby.” Since the introduction of this form of treatment, thousands of women with thin uterine linings have been reported treated and many have gone on to have babies after repeated prior IVF failure.

For those of you who aren’t familiar with the use of Viagra in IVF, allow me to provide some context. It was in the 90’s that Sildenafil (brand named Viagra) started gaining popularity as a treatment for erectile dysfunction. The mechanism by which it acted was through increasing penile blood flow through increasing nitric oxide activity. This prompted me to investigate whether Viagra administered vaginally, might similarly improve uterine blood flow and in the process cause more estrogen to be delivered to the basal endometrium and thereby increase endometrial thickening. We found that when Viagra was administered vaginally it did just that! However oral administration was without any significant benefit in this regard. We enlisted the services of a compound pharmacy to produce vaginal Viagra suppositories. Initially, four (4) women with chronic histories of poor endometrial development and failure to conceive following several advanced fertility treatments were evaluated for a period of 4-6 weeks and then underwent IVF with concomitant Viagra therapy. Viagra suppositories were administered four times daily for 8-11 days and were discontinued 5-7 days prior to embryo transfer in all cases.

Our findings clearly demonstrated that vaginal Viagra produced a rapid and profound improvement in uterine blood flow and that was followed by enhanced endometrial development in all four cases. Three (3) of the four women subsequently conceived. I expanded the trial in 2002 and became the first to report on the administration of vaginal Viagra to 105 women with repeated IVF failure due to persistently thin endometrial linings. All of the women had experienced at least two (2) prior IVF failures attributed to intractably thin uterine linings. About 70% of these women responded to treatment with Viagra suppositories with a marked improvement in endometrial thickness. Forty five percent (45%) achieved live births following a single cycle of IVF treatment with Viagra The miscarriage rate was 9%. None of the women who had failed to show an improvement in endometrial thickness following Viagra treatment achieved viable pregnancies.

Following vaginal administration, Viagra is rapidly absorbed and quickly reaches the uterine blood system in high concentrations. Thereupon it dilutes out as it is absorbed into the systemic circulation. This probably explains why treatment is virtually devoid of systemic side effects

It is important to recognize that Viagra will NOT be effective in improving endometrial thickness in all cases. In fact, about 30%-40% of women treated fail to show any improvement. This is because in certain cases of thin uterine linings, the basal endometrium will have been permanently damaged and left unresponsive to estrogen. This happens in cases of severe endometrial damage due mainly to post-pregnancy endometritis (inflammation), chronic granulomatous inflammation due to uterine tuberculosis (hardly ever seen in the United States) and following extensive surgical injury to the basal endometrium (as sometimes occurs following over-zealous D&C’s).

Combining vaginal Viagra Therapy with oral Terbutaline;
In my practice I sometimes recommend combining Viagra administration with 5mg of oral terbutaline. The Viagra relaxes the muscle walls of uterine spiral arteries that feed the basal (germinal) layer of the endometrium while Terbutaline, relaxes the uterine muscle through which these spiral arteries pass. The combination of these two medications interacts synergistically to maximally enhance blood flow through the uterus, thereby improving estrogen delivery to the endometrial lining. The only drawback in using Terbutaline is that some women experience agitation, tremors and palpitations. In such cases the terbutaline should be discontinued. Terbutaline should also not be used women who have cardiac disease or in those who have an irregular heartbeat.

About 75% of women with thin uterine linings see a positive response to treatment within 2-3 days. The ones that do not respond well to this treatment are those who have severely damaged inner (basal/germinal) endometrial linings, such that no improvement in uterine blood flow can coax an improved response. Such cases are most commonly the result of prior pregnancy-related endometrial inflammation (endometritis) that sometimes occurs post abortally or following infected vaginal and/or cesarean delivery.

Viagra therapy has proven to be a god send to thousands of woman who because of a thin uterine lining would otherwise never have been able to successfully complete the journey “from infertility to family”.

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sophia

Thank you for the reply. I had a uterine biopsy earlier this year for ERA and it was very painful and took a long time to get a good sample. Then had a uterine scratch done couple months later. Could these procedures have caused permanent damage and contributed to a poor uterine lining?

reply
Steve Swenson

Hello. I am a 34 year old male, my wife is 38. We have tried several cycles of IUI. I am not producing enough or healthy sperm. What should be my next course of action to find out what issues I have? Do I see a Urologist, or are there Urologist who specialize in male infertility? Thanks very much.

reply
Dr. Geoffrey Sher

You will need IVF.

It is hard for me to believe that more than three decades have flown by since I first introduced intrauterine insemination into the clinical arena (Journal of Fertility & Sterility, April, 1984). At that time and for more than 2 decades thereafter, I held the strong belief that IUI would provide a less expensive, safe and equally successful alternative to IVF in cases where the woman had at least one (1) patent Fallopian tube…. How wrong I was! In my defense however, let me say that in the 1980’s and 90’s the reported National IVF success rate was under 15% while y IVF success rates are now often 4 or even 5 times higher.

Today I believe that IUI is being over-used, is not nearly as beneficial as I once thought and that there are (often ignored) serious down-sides to its use. Here is one important example: Women who fail to ovulate or ovulate dysfunctionally, often respond to controlled ovarian stimulation (COS) by the releasing (ovulating) of several eggs at a time. Since unless IVF is used, it is not possible to control/regulate the number of embryos reaching the uterus, the risk of high-order multiple pregnancies (triplets or greater) is far greater with IUI. And, multiple pregnancies (especially triplets or greater) carry a very high maternal and neonatal risk.

Here are a few of the misperceptions about the use of IUI:

1) IUI is a “cost saver”. However, given the fact that IVF is at least 3-4 times more likely to be successful, when one looks at cost per baby (rather than cost per procedure) this turns out to be a fallacy. But cost also comes in the form of emotional currency and this needs to be measured in terms of the much lower chance of success with IUI.
2) “IUI is less invasive than IVF”… ….True! However aside from the surgical egg retrieval (which is a very safe procedure in the right hands/setting), IUI with gonadotropins requires largely the same drugs, preparation and monitoring as does IVF and the success rate is several fold lower than IVF.
3) The use of oral Clomiphene Citrate for IUI- COS provides the same success rates as does Gonadotropin-IUI. This is absolutely incorrect. In fact the IUI success rate with clomiphene is about 30% lower than when gonadotropins are used.
4) Natural cycle IUI has benefit: This is only true when frozen donor sperm is used for inseminations and in the isolated cases where there is non-immunologic cervical hostility to sperm. In all other cases, COS is needed to improve success.
5) IUI can be used in cases of Embryo Implantation Dysfunction: Given the complexity of treatment is in cases where a thin uterine lining, significant uterine anatomical disease or immunologic implantation dysfunction (IID) prevents a healthy pregnancy, it is my opinion that IVF is the preferred primary approach.
6) IUI can supplant or replace IVF in all cases where there is patency of at least 1 Fallopian tube. However, contrary to popular belief, there is no evidence that IUI improves pregnancy potential in cases of:
a. Moderate or severe male factor infertility
b. Endometriosis with patent Fallopian tubes. Since inseminating sperm does not overcome the main impediment to fertility, i.e., a “toxic” peritoneal factor that compromises sperm penetrating the egg envelopment).
c. Older women (over 40y) where the IUI pregnancy yield is only about 2% per treatment cycle.

Upon Honest Reflection:
Unfortunately, too many physicians who should (and alas often do) know better, still liberally recommend IUI preferentially in cases of moderate or severe male infertility, older infertile women or those with diminished ovarian reserve (DOR), cases of endometriosis or where there is clear evidence of an anatomical r immunologic implantation issue. Such women would be much better advised to go directly to IVF but find themselves attracted to what they erroneously consider to be a much lower cost alternative.

Then there is the fact that many infertile patients, erroneously believing that IUI is less risky that IVF, provides an equivalent chance of success, and comes at a much lower price tag, put undue pressure on their physicians to first try the former several times before resorting to the latter.

To make matters worse, many misguided insurance providers (purely for economic reasons) demand that their female clients who have at least 1 patent Fallopian tube, first undergo several unsuccessful attempts at IUI before becoming eligible for IVF. And they often take this position regardless of cast iron indications that IVF should be the primary treatment of choice.

In summary, it is my opinion that IUI is presently an over-prescribed treatment. As such, we as physicians need to rethink the basis upon which we recommend IUI and educate our patients appropriately

Geoff Sher

Call 702-533-2691 for an online consultation with me if you wish to discuss further

reply
Heather Boersma

Hi, I have an AMH of 0.53ng/ml and just underwent an IVF roudn with menopur 225 and rekovelle 75. This was preceded by 5 weeks of androgel and estrace, The cycle was cancelled as I only had one follicle. My dr is now suggesting I use clomid ( i tried one IUI with clomid and got two follicles) and a little bit of menopur and go for an iui and if I have 3 follicles go for IVF. What are your thoughts?

reply
Dr. Geoffrey Sher

Very respectfully Heather.

I am opposed to the use of clomiphene in women with DOR. Also opposed to IUI at a time when, given the same consideration you are running out of time on the biological clock!

Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Dr. Geoffrey Sher

A repeat evaluation of the uterine cavity buy hysterosonogram or hysteroscopy is only needed if an abnormality is suspected and/or your previous evaluation was >18 months prior…in my opinion!

Until less than a decade ago, most women undergoing IVF would have embryos transferred to the uterus in the same cycle that the egg retrieval was performed (“Fresh” Embryo Transfer). This was because embryo cryopreservation (freezing) was a hazardous undertaking. In fact, it resulted in about 30% not surviving the freezing process and those that did, having about one half the potential of “fresh embryos to implant and propagate a viable pregnancy. The main reason for the high attrition rate associated with embryo cryopreservation is that the “conventional” freezing” process that was done slowly and this resulted in ice forming within the embryo’s cells, damaging or destroying them. The introduction of an ultra-rapid cryopreservation process (vitrification) freezes the embryos so rapidly as to avoid ice crystals from developing. As a result, >90% survive the freeze/thaw process in as good a condition as they were prior to being frozen and thus without being compromised in their ability to propagate a viable pregnancy.
Recently, there have been several articles that have appeared in the literature suggest that an altered hormonal environment may be the reason for this effect. There have also been reports showing that when singletons (pregnancy with one baby) conceived naturally are compared to singletons conceived through a “fresh” embryo transfers they tend to have a greater chance of low birth weight/prematurity. This difference was not observed in babies born following FET. Hence, there is a suspicion that the altered hormonal environment during the fresh cycle may be the causative factor.
Available evidence suggests that FET (of pre-vitrified blastocysts) is at least as successful as is the transfer of “fresh” embryos and might even have the edge. The reason for this is certainly unlikely to have anything to do with the freezing process itself. It more than likely has to do with two factors:
a) An ever increasing percentage of FET’s involve the transfer of PGS-tested, fully karyotyped, euploid blastocysts that have a greater potential to propagate viable pregnancies, than is the case with “fresh” ET’s where the embryos have rarely undergone prior PGS selection for “competency”…and,
b) With targeted hormone replacement therapy for FET, one is far better able to better to optimally prepare the endometrium for healthy implantation than is the case where embryos are transferre3d following ovarian stimulation with fertility drugs.
There are additional factors other than method used for embryo cryopreservation that influence outcome following FET. These include
• An emerging trend towards selective transferring only advanced (day 5-6) embryos (blastocysts).
• (PGS) to allow for the selective transfer of genetic competent (euploid) embryos
• Addressing underlying causes of implantation dysfunction (anatomical and immunologic uterine factors) and
• Exclusive use of ultrasound guidance for delivery of embryos transferred to the uterus.
Against this background, the use of FET has several decided advantages:
• The ability to cryostore surplus embryos left over after fresh embryo transfer
• The ability to safely hold embryos over for subsequent transfer in a later frozen embryo transfer (FET) cycle (i.e. Staggered IVF) in cases where:
1. Additional time is needed to perform preimplantation Genetic testing for embryo competency.
2. In cases where ovarian hyperstimulation increases the risk of life-endangering complications associated with critically severe ovarian hyperstimulation syndrome (OHSS).
3. To bank (stockpile) embryos for selective transfer of karyotypically normal embryos in older women or those who are diminished ovarian reserve
4. The ability to store embryos in cases of IVF with third party parenting (Egg Donation; Gestational Surrogacy and Embryo donation) and so improve convenience for those couples seeking such services.
Preimplantation Genetic Sampling with FET:
The introduction of preimplantation genetic sampling (PGS) to karyotyping of embryos for selective transfer of the most “competent” embryos, requires in most cases that the tested blastocysts be vitribanked while awaiting test results and then transferred to the uterus at a later date. Many IVF programs have advocated the routine use of PGS in IVF purported to improve IVF outcome. But PGS should in my opinion should only be used selectively. I do not believe that it is needed for all women undergoing IVF. First there is the significant additional cost involved and second it will not benefit everyone undergoing IVF, in my opinion.
While PGS is a good approach for older women and those with diminished ovarian reserve (DOR) and also for woman who experience recurrent pregnancy loss (RPL) or “unexplained” recurrent IVF failure recent data suggests that it will not improve IVF success rates in women under 36Y who have normal ovarian reserve, who represent the majority of women seeking IVF treatment. Nor is it needed in women (regardless of their age) undergoing IVF with eggs donated by a younger donor. This is because in such women about 1:2/3 of their eggs/embryos are usually chromosomally normal, and in most cases will upon fertilization produce multiple blastocysts per IVF attempt, anyway. Thus in such cases the transfer of 2 blastocysts will likely yield the same outcome regardless of whether the embryos had been subjected to PGS or not. The routine use of
It is another matter when it comes to women who have diminished ovarian reserve and/or DOR contemplating embryo banking and for women with unexplained recurrent IVF failure, recurrent pregnancy loss and women with alloimmune implantation dysfunction who regardless of their age or ovarian reserve require PGS for diagnostic reasons.
Embryo Banking: Some IVF centers are doing embryo banking cycles with Preimplantation Genetic Screening (PGS). With Embryo Banking” several IVF cycles are performed sequentially (usually about 2 months apart), up to the egg retrieval stage. The eggs are fertilized and the resulting advanced embryos are biopsied. The biopsy specimens are held over until enough 4-8 blastocysts have been vitribanked, thus providing a reasonable likelihood that one or more will turn out to be PGS-normal. At this point the biopsy specimens (derived all banking cycles) are sent for PGS testing at one time (a significant cost-saver), the chromosomally normal blastocysts are identified and the women are scheduled for timed FET procedures….. with a good prospect of a markedly improved chance of success as well as a reduced risk of miscarriage.
Standard (proposed) Regimen for preparing the uterus for frozen embryo transfer FET) is as follows:

The recipient’s cycle is initiated with an oral contraceptive-OC (e.g. Marvelon/Lo-Estrin; Lo-Ovral etc) for at least 10 days. This is later overlapped with 0.5 mg. (10 units) Lupron/Lucrin (or Superfact/Buserelin) daily for 3 days. Thereupon the OC is withdrawn and daily 0.25 mg (5 units) of Lupron/Lucrin/Superfact injections are continued. Menstruation will usually ensue within 1 week. At this point, an ultrasound examination is performed to exclude ovarian cyst(s) and a blood estradiol measurement is taken (it needs to be <70pg/ml). The daily Lupron/Lucrin/Superfact is continued until the initiation of progesterone therapy (see below).

Four milligram (4mg) Estradiol valerate (Delestrogen) IM is injected SC, twice weekly (on Tuesday and Friday), commencing within a few days of Lupron/Lucrin/Superfact-induced menstruation. Blood is drawn on Mondays and Thursdays for measurement of blood [E2]. This allows for planned adjustment of the E2V dosage scheduled for the next day. The objective is to achieve a plasma E2 concentration of 500-1,000pg/ml + an endometrial lining of >8mm, as assessed by ultrasound examination done after 10 days of estrogen exposure i.e. a day after the 3rd dosage of Delestrogen. The twice weekly, final (adjusted) dosage of E2V is continued until pregnancy is discounted by blood testing or an ultrasound examination. Dexamethasone 0.75 mg is taken orally, daily with the start of the Lupron/Lucrin/Superfact. This is continued until the 10th week of pregnancy or until pregnancy is discounted, at which point it is slowly tailed off over a 2 week period and stopped. Oral folic acid (1 mg) is taken daily commencing with the first E2V injection and is continued throughout gestation. Patients also receive Ciprofloxin 500mg BID orally starting with the initiation of Progesterone therapy and continuing for 10 days.

Luteal support commences 6 days prior to the ET, with intramuscular progesterone in oil (PIO) at an initial dose of 50 mg (P4-Day 1). Thereupon, (from the following day) , progesterone administration-Day 2, PIO is increased to 100 mg daily continuing until the 10th week of pregnancy, or until a blood pregnancy test/negative ultrasound (after the 6-7th gestational week), discounts a viable pregnancy.

Also, commencing on the day following the ET, the patient inserts one (1) vaginal progesterone suppository (100 mg) in the morning + 2mg E2V vaginal suppository (in the evening). This is continued until the 10th week of pregnancy or until pregnancy is discounted by blood testing or by an ultrasound examination done at the 6-7th gestational week. Dexamethasone 0.75mg is continued to the 10th week of pregnancy (tailed off from the 8th to 10th week) or as soon as pregnancy is ruled out. With the obvious exception of the fact that embryo recipients do not receive an hCG injections, luteal phase and early pregnancy hormonal support and immuno-suppression is otherwise the same as for conventional IVF patients. Blood pregnancy tests are performed 13 days and 15 days after the first P4 injection was given.

Note: Alternative progestational therapy in cases where intramuscular progesterone is not used: One (1) vaginal application of Crinone 8% is administered on the 1st day (referred to as luteal phase day 0 – LPO). On LP Day 1, they will commence the administration of Crinone 8% twice daily (AM and PM) until the day of embryo transfer. Withhold Crinone on the morning of the embryo transfer and resume Crinone administration in the PM. Crinone twice daily is resumed from the day after embryo transfer. Contingent upon positive blood pregnancy tests, and subsequently upon the ultrasound confirmation of a viable pregnancy, administration of Crinone twice daily are continued until the 10th week of pregnancy.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Lena George

Hi Dr Sher,
Could long standing treatment with SSRIs be the factor of severe male infertility and if so, is that reversible after withdrawal of the medication?
Thanks for your time.

reply
Dr. Geoffrey Sher

Studies that specifically investigate the effects of paternal SSRI use on reproductive outcomes are very sparse. There have been a few studies in humans that evaluated the effects of SSRIs on sperm. Only one of these, a case report, looked at reproductive outcomes other than semen parameters. While there is a suggestion that long term use of SSRI’s might alter sperm parameters, there are to my knowledge, none that show an effectb on outcome.

Geoff Sher

reply
Lena George

Thank you Doctor.
I am 33 years old, AMH 22, severe male factor infertility, 2 rounds of IVF-ICSI (both of them got 300 iu fostimon (FSH) from day 2),
1st round 15 mature oocytes, 9 fertilized, none of them made it to day5.
2nd round 16 mature cells, 8 fertilized, got 2 blastocytes.
What do you think could be the reason for such a low rate of fertilization? Do you agree with such a high levels of FSH I was given?

reply
Dr. Geoffrey Sher

One of the commonest questions asked by patients undergoing IVF relates to the likelihood of their eggs fertilizing and the likely “quality of their embryos. This is also one of the most difficult questions to answer. On the one hand many factors that profoundly influence egg quality; such as the genetic recruitment of eggs for use in an upcoming cycle, the woman’s age and her ovarian reserve, are our outside of our control. On the other hand the protocol for controlled ovarian stimulation (COS) can also profoundly influence egg/embryo development and this is indeed chosen by the treating physician.

First; it should be understood that the most important determinant of fertilization potential, embryo development and blastocyst generation, is the numerical chromosomal integrity of the egg (While sperm quality does play a role, in the absence of moderate to severe sperm dysfunction this is (moderate or severe male factor infertility a relatively small one). Human eggs have the highest rate of numerical chromosomal irregularities (aneuploidy) of all mammals. In fact only about half the eggs of women in their twenties or early thirties, have the required number of chromosomes (euploid), without which upon fertilization the cannot propagate a normal pregnancy. As the woman advances into and beyond her mid-thirties, the percentage of eggs euploid eggs declines progressively such that by the age of 40 years, only about one out of seven or eight are likely to be chromosomally normal and by the time she reaches her mid-forties less than one in ten of her eggs will be euploid.

Second; embryos that fail to develop into blastocysts are almost always aneuploid and not worthy of being transferred to the uterus because they will either not implant, will miscarry or could even result in a chromosomally abnormal baby (e.g. Down syndrome). However, it is incorrect to assume that all embryos reaching the blastocyst stage will be euploid (“competent”). ). It is true that since many aneuploid embryos are lost during development and that those failing to survive to the blastocyst stage are far more likely to be competent than are earlier (cleaved) embryos. What is also true is that the older the woman who produces the eggs, the less likely it is that a given blastocyst will be “competent”. As an example, a morphologically pristine blastocyst derived from the egg of a 30 year old woman would have about a 50:50 chance of being euploid and a 30% chance of propagating a healthy, normal baby, while a microscopically comparable blastocyst derived through fertilization of the eggs from a 40 year old, would be about half as likely to be euploid and/or propagate a healthy baby.

While the effect of species on the potential of eggs to be euploid at ovulation is genetically preordained and nothing we do can alter this equation, there is unfortunately a lot we can (often unwittingly) do to worsen the situation by selecting a suboptimal protocol of controlled ovarian stimulation (COS). This, by creating an adverse intraovarian hormonal environment will often disrupt normal egg development and lead to a higher incidence of egg aneuploidy than otherwise might have occurred. Older women, women with diminished ovarian reserve (DOR) and those with polycystic ovarian syndrome are especially vulnerable in this regard.

During the normal, ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone), that are produced by the ovarian stroma (tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (that line the inner walls of follicles), and egg maturation. However, over-production of testosterone can adversely influence the same processes. It follows that COS protocols should be individualized and geared toward optimizing follicle growth and development time while avoiding excessive ovarian androgen (testosterone) production and that the hCG “trigger shot” should be carefully timed.

In summary it is important to understand the influence species, age of the woman as well as the effect of the COS protocol can have on egg/embryo quality and thus on IVF outcome. The selection of an individualized protocol for ovarian stimulation is one of the most important decisions that the RE has to make and this becomes even more relevant when dealing with older women, those with DOR and women with PCOS. Such factors will in large part determine fertilization potential, the rate of blastocyst generation and indeed IVF outcome.

Geoff Sher
Call 702-533-2691 for an online consultation.

reply
Marie

Will taking oxycodone ( without the acetaminophen) during an IVF stimulation in your opinion have a negative effect on the eggs? Please know I will not take them without my doctors knowledge or approval I just want to know your opinion. Thank you for your time, Dr. Sher.

reply
Dr. Geoffrey Sher

I would not use this during a cycle …unless it is absolute3ly necessary.

Geoff Sher

reply
Nicky Willacy

I am 29 days post ovulation through a single frozen embroyo transfer. My levels are

8dpt 21
11dpt 46
15dpt 218
19dpt 459
23dpt 636

Do you think this is viable or could it be ectopic? I have more bloods on sunday and need to book in for a scan next week.

reply
Dr. Geoffrey Sher

I am not optimistic about this being a viable intrauterine pregnancy. Of course an ectopic is “possible” and you should aware that any sudden abdominal pain and bleeding should be an indication to go directly to the ER for evaluation.

Geoff Sher

reply
Erika Silva

Hi Dr. Sher,
I’m 44 yo I have two children 8&5 that I conceived naturally. I had a miscarriage about 3 years. Since then we have been trying with no luck. We have now decided on IVF. Had an ultrasound and was told I have 8 follicles. A few blood test were done on Monday awaiting results for: AMH, MTHFR, TPO, FSH and Estradiol. I’m so overwhelmed with everything any suggestions or recommendations
Thank you

reply
Dr. Geoffrey Sher

Respectfully,

Advancing age profoundly affects egg “competency, such that independent of the number of eggs you might still have, egg quality at 44 is invariably so compromised, that it is very wise to consider IVF with egg donation. However, if in spite of this advice, you insist upon using own eggs, then please consider the following:

The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy

Please visit my Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Emily

Dear Dr Sher in your many years of practice when using your agonist antagonist conversion protocol how much does the follicle count at baseline correlate with the number of eggs retrieved in patients?

reply
Dr. Geoffrey Sher

Using this protocol, the correlation is often poor. What you are looking for is a steady rise in E2.

With the A/ACP, it is follicular size rather than absolute blood [E2] levels that is mainly used to determine developmental progress and the timing of the hCG “trigger”. While serial This is because with the A/ACP, E2 levels are often falsely understated. The possible explanation could be that when a GnRH-antagonist is administered for a protracted period of time, an isomeric variant of E2 is produced, one that is under-read by the standard E2 blood assay, resulting in under-reading of the true [E2]. This can often be misleading. Accordingly when the A/ACP is used, we rely much more upon ultrasound evidence of follicle growth, along with a progressive (albeit much slower) rise in E2 , to evaluate response t5o A/ACP stimulation.

Women who have elevated basal AMH levels, women with irregular or absent ovulation and those with PCOS, where the peak [E2] response to even low dosage gonadotropin stimulation tends who are often at risk of developing a life endangering condition known as severe ovarian hyperstimulation syndrome (OHSS). In such cases, it is critical that measured [E2] blood levels be accurate and truly representative of the degree of ovarian stimulation. Accordingly, I do not advocate the use the A/ACP in such cases.

Geoff Sher

reply
Emily

Thank you. So I shouldn’t worry yet if they only saw 12 follicles on cycle day 2? I don’t have PCOS but my doctor said this protocol would be best for me because I ovulated before retrieval on the long lupron protocol. He said this is a famous Sher protocol so I found your blog to ask because I am worried about only seeing 12 follicles.

reply
Dr. Geoffrey Sher

Perhaps we should talk. Call my assistant, Patti and set up an online consultation with me to discuss specifics.

Geoff Sher

reply
Randi Cooper

Hello Doctor,
I had an IUI on 8-8-20. I had a positive pregnancy blood test on 8-24-20 (16dpo) hcg level 67. Two days later 18dpo hcg 108, 20 dpo hcg 219, 23 dpo 607. The doctor is concerned although my numbers are doubling my value is too low and indicates an ectopic. What do you think? Have you seen slow rising hcg turn in to a successful pregnancy?

reply
Dr. Geoffrey Sher

Hard to say. Wait 2 weeks and do an US for a more definitive answer.

In the meanwhile, if you experience sudden abdominal pain with bleeding go straight to the nearest ER.

Good luck!

Geoff Sher

reply
Randi Cooper

Thank you for a reply! Yesterday the doctor did a scan and a small, empty gestational sac was viewed. He said that he should of been able to see fetal structures at this point. My hcg numbers also did not double. He said I should miscarry soon.
They want me to come back tomorrow for another scan. I have been researching and am wondering a few things:

I chose to have an IUI because of a PCOS diagnosis and I am 36. I was told I Do not ovulate without the help of ovidrel. After 3 IUI I became pregnant. But I can’t help but wonder if losing this baby is because of my PCOS. That although they made me ovulate with ovidrel, I ovulated a poor quality egg.

Do I have a higher risk of miscarriage because of PCOS and poor quality eggs?
Could that be the cause of this gestational sac being empty and leading to miscarriage?
Is there a likelihood this will continue to happen if we continue with IUI? Does IVF eliminate or reduce these types of issues?
Im trying to decide if I should move on to ivf instead of attempting IUI again.

I do have children. But my boys were conceived in my mid 20s. Trying In my 30s has been quite the battle. Any advice is much appreciated.

Thank you!

reply
Dr. Geoffrey Sher

Hi Randi,

Yes, PCOS women have a greater percentage of “incompetent eggs” than do controls. Aldso it is much more difficult to protect the eggs during ovarian stimulation. I would move on to IVF and do Preimplantation Genetic Testing of all blastocysts before undergoing embryo transfer.

Polycystic ovary syndrome (PCOS) is a common hormonal system disorder among women affecting between 5% and 10% of women of reproductive age worldwide. Women with PCOS may have enlarged ovaries that contain small collections of fluid — called follicles — located in each ovary as seen during an ultrasound. The condition is characterized by abnormal ovarian function (irregular or absent periods, abnormal or absent ovulation and infertility), androgenicity (increased body hair or hirsutism, acne) and increased body weight –body mass index or BMI. The ovaries of women with PCOS characteristically contain multiple micro-cysts often arranged like a “string of pearls” immediately below the ovarian surface (capsule).interspersed by an overgrowth of ovarian connective tissue (stroma).
PCOS is one of the most common causes of menstrual irregularities, infertility, and hirsutism, Despite an enormous effort to define its cause, the etiology of PCOS remains unclear, and there is no definite cure at this time. PCOS is clearly a heterogeneous disorder which often has a familial (genetic) basis. Infertility associated with PCOS has been attributed to numerous factors, including dysfunctional gonadotropin pituitary secretion, peripheral insulin resistance, elevated adrenal and/or ovarian androgen (male hormone) levels, and dysfunction of several growth factors. Women with this condition are often obese and insulin resistant. The compensatory hyperinsulinemia further stimulates ovarian androgen production which may be detrimental to egg maturation and there is a clear link between the degree of insulin resistance and anovulation. PCOS is also a significant long-term health risk for women, thus necessitating vigilance through regular annual examinations (non-insulin dependent diabetes mellitus, hypertension, hypercholesterolemia, cardiovascular disease and endometrial cancer). Whereas PCOS-related infertility is usually manageable through the use of fertility drugs, lifestyle changes (diet and exercise) remain a mainstay of long-term therapy. More recently, ovulation rates, circulating androgens, pregnancy rates and perhaps even first-trimester miscarriage rates have been shown to improve when insulin sensitizers like metformin are used to correct the underlying insulin resistance.
Most patients with PCOS are young and have excellent pregnancy rates with oral clomiphene. Those that require more aggressive treatments with injectable medications probably represent a subgroup of PCOS patients with severe ovarian dysfunction. These women often have explosive response to gonadotropins which can result in serious complications like Severe Ovarian Hyperstimulation Syndrome (OHSS…see below) and high order multiple births. In those women, the ability to perform “prolonged coasting” (see below) and selectively transfer fewer embryos during IVF offers a clear advantage over standard gonadotropin injections.
Egg quality in PCOS
The potential for a woman’s eggs to undergo orderly maturation, successful fertilization and subsequent progression to “good quality embryos” is in large part genetically determined. However, the expression of such potential is profoundly susceptible to numerous influences, especially intra-ovarian hormonal changes during the pre-ovulatory phase of the cycle. Proper follicular stimulation as well as precise timing of egg maturation with LH (Luteinizing Hormone) or hCG (human chorionic gonadotropin) is crucial to optimal egg maturation, fertilization and ultimately embryo quality. Both pituitary gonadotropins, LH and FSH (follicle stimulating hormone) play a pivotal but different role in follicular development. The action of FSH is mainly directed toward granulosa cell (cells lining the inside of the follicle) proliferation and estrogen production (E2). LH, on the other hand, acts primarily on the ovarian stroma (the connective tissue that surrounds the follicle) to produce androgens. While small amounts of ovarian androgens, such as testosterone, enhance egg and follicle development, over-exposure to them can have a deleterious effect. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.
Suppressing pituitary secretion of LH with gonadotropin releasing hormone (GnRH) agonists such as Lupron®, is particularly useful in PCOS. In that condition, serum LH levels are elevated, leading to stromal overgrowth, follicular arrests (so-called cysts) and high levels of androgens synthesis. It is therefore not surprising that these follicles often yield poorly developed (“immature”) eggs” at the time of egg retrieval (ET) and that “poor egg/embryo quality”, inadequate endometrial development and high miscarriage rates are common features of this condition. However, contrary to popular belief, this is not due to an intrinsic deficit in “egg quality”. Stimulation protocols geared toward optimizing follicle and egg development and avoiding over exposure to androgens correct these problems ad result in pregnancy rates similar to those of non-PCOS women. Whereas the overuse of LH-containing preparations such as Menopur® and Luveris® further aggravates this effect. In conclusion, to maximize ultimate oocyte maturation, we strongly recommend against the exclusive use of such products in PCOS patients, preferring FSH-dominant products such as Folistim®, Gonal F® or Bravelle® over a period of at least 9 days following pituitary suppression with Lupron®.
PCOS women often have a family history of diabetes and demonstrable insulin resistance (evidenced by high blood insulin levels and an abnormal 2-hour glucose tolerance test).This underlying Diabetes mellitus tendency could play a role in the development of PCOS and contribute to the development of obesity, an abnormal blood lipid profile, and a predisposition to coronary vascular disease. Women with PCOS are slightly more at risk of developing uterine, ovarian and possibly also breast cancer in later life and accordingly should be evaluated for these conditions on a more frequent basis than would ordinarily be recommended to non-PCOS women.
Most women with PCOS either do not ovulate at all or they ovulate irregularly. As a consequence thereof they in addition usually experience delayed, absent or irregular menstruation. In addition, an inordinate percentage of the eggs produced by PCOS women following ovulation induction, tend to be chromosomally abnormal (aneuploid). Rather than being due to an intrinsic egg defect being inherent in PCOS women, the poor egg quality more than likely the result of over-exposure to male hormones (predominantly, testosterone) produced by the ovarian stroma. These two factors (ovulation dysfunction and poor egg quality) are the main reasons for the poor reproductive performance (infertility and an increased miscarriage rate) in PCOS women.
PCOS patients are at an inordinate risk of severely over-responding fertility drugs, both oral varieties (e.g. Clomiphene, Serophene & Femara) and especially the injectables (e.g. Follistim, Puregon, Gonal F, Menopur and Bravelle) by forming large numbers ovarian follicles. This can lead to life endangering complications associated with sever ovarian hyperstimulation (OHSS). In addition PCOS women receiving fertility drugs often experience multiple ovulations putting them at severe risk (40%+) of high order multiple pregnancy (i.e. triplets or greater) with often devastating consequences.
VARIETIES OF POLYCYSTIC OVARIAN SYNDROME:
1) Hypothalamic-pituitary-PCOS: This is the commonest form of PCOS and is often genetically transmitted and is characteristically associated with a blood concentration of Luteinizing Hormone (LH) that is uncharacteristically much higher than the Follicle Stimulating Hormone (FSH) level (FSH is normally higher than the LH concentration) as well as high-normal or blood androgen ( male) hormone concentrations (e.g. androstenedione, testosterone and dehydroepiandrosterone -DHEA).Hypothalamic-pituitary-ovarian PCOS is also often associated with insulin resistance and in about 40%-50% of the cases.
2) Adrenal PCOS: Here the excess of male hormones are derived from overactive adrenal glands rather than from the ovaries. Blood levels of testosterone and/or androstenedione raised but here, but here, the blood level of dehydroepiandrosterone (DHEAS) is also raised, clinching the diagnosis.
3) Severe pelvic adhesive disease secondary to severe endometriosis, chronic pelvic inflammatory disease and/or extensive pelvic surgery: Women who have this type of PCOS tend to less likely to hyperstimulate in response to ovulation induction . Their. DHEAS is also is not raised.

TREATMENT OF INFERTILITY DUE TO ASSOCIATED OVULATION DYSFUNCTION:
Hypothalamic-pituitary-/ovarian PCOS: Ovulation induction with fertility drugs such as clomiphene citrate, Letrozole (Femara) or gonadotropins, with or without intrauterine insemination (IUI) is often highly successful in establishing pregnancies in PCOS women. However, IVF is fast becoming a treatment of choice (see below).

In about 40% of cases, 3-6 months of oral Metformin (Glucophage) treatment results in a significant reduction of insulin resistance, lowering of blood androgen levels, an improvement in ovulatory function, and/or some amelioration of androgenous symptoms and signs.
Surgical treatment by “ovarian drilling” of the many small ovarian cysts lying immediately below the envelopment (capsule) of the ovaries, is often used, but is less successful than alternative non-surgical treatment and is only temporarily effective. The older form of surgical treatment, using ovarian wedge resection is rarely used any longer as it can produce severe pelvic adhesion formation.
Adrenal PCOS is treated with steroids such as prednisone or dexamethasone which over a period of several weeks will suppress adrenal androgen production, allowing regular ovulation to take place spontaneously. This is often combined with clomiphene, Letrozole and/or gonadotropin therapy to initiate ovulation.
PCOS attributable to Pelvic Adhesive Disease is one variety which often is associated with compromised ovarian reserve, a raised FSH blood level and ovarian resistance to fertility drugs. In many such cases, high dosage of gonadotropins (FSH-dominant) with “estrogen priming” will often elicit an ovarian response necessary for successful ovulation induction and/or IVF. Neither steroids nor Metformin are helpful in the vast majority of such cases.
PCOS women undergoing ovulation induction usually release multiple eggs following the hCG trigger and are thus at inordinate risk of twin or higher order multiple pregnancies. They are also at risk of developing OHSS. Many now believe that IVF should be regarded as a primary and preferential treatment for PCOS. The reason is that it is only through this approach that the number of embryos reaching the uterus can be controlled and in this manner the risk of high-order multiples can be minimized and it is only in the course of IVF treatment that a novel treatment method known as “prolonged coasting” ( see below) which prevents OHSS, can be implemented
SEVERE OVARIAN HYPERSTIMULATION SYNDROME (OHSS):
As indicated above, there is an inordinate propensity for women with PCOS to hyper-respond to gonadotropin fertility drugs and in the process produce large numbers of ovarian follicles. If left unchecked this can lead to OHSS, a potentially life endangering condition. The onset of OHSS is signaled by the development of a large number of ovarian follicles (usually more than 25 in number). This is accompanied by rapidly rising plasma estradiol (E2) levels, often exceeding 3000pg/ml within 7 or 9 days of stimulation, often rapidly peaking above 6,000 pg/ml prior to hCG administration. When this happens, the risk of OHSS developing is above 80%.
Symptoms and signs of OHSS include: abdominal distention due to fluid collection (ascites), fluid in the chest cavity (hydrothorax), rapid weight gain (of a pound or more per day) due to tissue fluid retention, abdominal pain, lower back ache, nausea, diarrhea, vomiting, visual disturbances such as blurred vision and spots in front of the eyes (scotomata), a rapidly declining urine output, cardiovascular collapse and failure of blood to clot which sometimes results in severe bruising (echymosis) and frank bleeding. These symptoms and signs may appear before pregnancy can be diagnosed. If pregnancy occurs, the condition is likely to worsen progressively over a period of 3-5 weeks whereupon it rapidly resolves spontaneously over a few days. If no pregnancy occurs, the symptoms and signs all disappear spontaneously within 10-12 days of the hCG injection.
When increasing fluid collection in the abdominal cavity (ascites) starts to compromise breathing raising the head of the bed rose slightly by placing a 4-6 inch block at the base of each head post and using a few additional pillows, will sometimes help ameliorate the problem. In cases where this does not help or symptoms become severe, all or most of the fluid can readily and safely be drained through t transvaginal sterile needle aspiration (vaginal paracentesis-performed once or sometimes twice a week) can be performed once or twice weekly . The problem will usually self corrects within 10-12 days of the hCG shot if pregnancy does not occur or, by the 8th week of pregnancy.
Urine output should be monitored daily to see if it drops below about 500ml a day (about two cups and a half). A chest X-ray, to evaluate for fluid collection in the chest and around the heart should be done weekly along with blood tests for hematocrit, BUN, electrolytes, creatinine, platelet count and fibrin split products (FSP). If indicated on the basis of a deteriorating clinical situation, hospitalization might be needed for close observation and if necessary, to provide intensive care.
In all case of OHSS, the ovaries will invariably be considerably enlarged. This is irrelevant to the final outcome, unless ovarian torsion (twisting of the ovary on its axis), an extremely rare complication occurs. The latter would usually require surgical emergency surgical intervention.

It is important to know that symptoms and signs of OHSS are severely aggravated by rising hCG levels. Thus such patients should not receive additional hCG injections.
Does PCOS cause poor egg/embryo quality? It is an undeniable fact that women with PCOS undergoing IVF are commonly found to have poorly developed (“dysmorphic”) eggs, with reduced fertilization potential and yielding “poor quality embryos”. However, in the author’s opinion (which admittedly runs contrary to popular opinion), this is unlikely to be due to an intrinsic deficit in egg quality. Rather, it more likely relates to intra-ovarian hormonal changes brought about by hyperstimulation and which compromise egg development. This effect, in the author’s opinion, can often be significantly reduced through implementation of an individualized or customized ovarian stimulation protocols that minimize exposure of the developing follicles and eggs to excessive LH-induced ovarian androgens. This can be best achieved by limiting the use of LH-containing gonadotropins such as Menopur through selective institution of “prolonged coasting” (see below).
In the past, the onset of OHSS, heralded by the presence of large numbers of developing ovarian follicles and rapidly rising plasma estradiol levels often led the treating physician to prematurely administer hCG in an attempt to abruptly arrest the process and prevent escalation of risk to the patient. However the premature administration of hCG, while abruptly arresting further proliferation of estrogen producing granulosa cells in the follicles, unfortunately also prematurely arrests egg development. Since the ability of an egg to achieve optimal maturation upon hCG triggering is largely predicated upon it having achieved prior optimal development, the untimely administration of hCG which triggers meiosis, probably increases the risk of numerical chromosomal abnormalities (aneuploidy) of the egg. This in turn would lead to reduced fertilization potential, poor egg/embryo quality and low embryo implantation potential.
In women with PCOS the connective tissue that surrounding the follicles (ovarian stroma) is often characteristically overgrown (stromal hyperplasia). It is the stroma that produces androgens (mainly testosterone) in response to LH. It is this, coupled with the fact that PCOS women also often have elevated blood LH concentrations (see above) results in the excessive production of androgen hormones, which is so characteristic in PCOS. While excessive exposure of developing eggs to ovarian androgens compromises follicle and egg growth it also impairs endometrial response to estrogen, which could explain the common finding of poor endometrial thickening in many PCOS women undergoing IVF.
The obvious remedy for these adverse effects on egg and endometrial development is to employ stimulation protocols that limit ovarian over-exposure to LH and allowing the time necessary for the follicles/eggs to develop optimally, prior to administering hCG through the judicious implementation of “Prolonged coasting” (PC).

“PROLONGED COASTING”:
In the early 90’s we were the first to report on “prolonged coasting” (PC), a novel approach that protects egg quality while preventing the development of OHSS. PC has since, gained widespread acceptance as a method of choice for preventing OHSS and has established itself as the “standard of care”. It involves withholding gonadotropin therapy while continuing the administration of the GnRHa and waiting until the plasma estradiol concentration drops below 2,500 pg/ml. Thereupon hCG is administered. In such cases, regardless of the number of developed follicles or the number of eggs retrieved, these women rarely, if ever develop OHSS. It has been reported that while PC virtually eliminates the risk of life-endangering complications associated with OHSS, there are reports in the literature that “the price to pay with PC” is often a poorer fertilization rate and reduced embryo implantation potential, compromising the pregnancy”. It is the author’s opinion an experience in the development of PC that egg/embryo quality deficit likely has little to do with the process of PC, itself and can be explained as follows: When PC is initiated too early, follicle growth and development may cease (as evidenced by the estradiol level plateauing or falling immediately, rather than showing an initial continued increase), and when PC is started too late, the follicles will often become cystic, measuring >21mm by the time the estradiol level falls below the safe threshold of 2500pg/ml, and so harbor dysmorphic eggs. Thus precise timing of the initiation of PC is critical. It should in pact be initiated preemptively in all cases when there are more than 25 follicles and the plasma estradiol reaches or exceeds 2,500pg/ml in association, provided that at least 50% of the follicles measuring 14-16mm in mean diameter. Not a day sooner or a day later. If PC is initiated with precise timing, it will usually be followed by a further progressive rise in the estradiol concentration. After a few days, the estradiol level will plateau and then it will start to fall (often rapidly). The temptation to trigger with hCG before the estradiol level falls below 3000picogtrams per milliliter must be resisted …even if the level falls below 1,000pg/ml by the time hCG is given.
Since when using agonist ( Cetrotide/Ganirelix/Orgalutron) pituitary suppression throughout the stimulation phase with gonadotropins, the plasma estradiol level often under expressed follicle growth, this method of pituitary blockade should not be used in cases ( such as with PCOS) where PC might be required.

Please go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• A Fresh Look at the Indications for IVF
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• IVF and the use of Supplementary Human Growth Hormone (HGH) : Is it Worth Trying and who needs it?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Embryo Transfer: The “Holy Grail in IVF.
• IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
• Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Genetically Testing Embryos for IVF
• Staggered IVF
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Sher Fertility Solutions (SFS): An Exciting New Chapter….
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• Avoiding High Order Multiple Pregnancies (Triplets or Greater) with IVF
• The Role of Nutritional Supplements in Preparing for IVF
• Ovarian Hyperstimulation Syndrome (OHS): Its Evolution & Reducing itsIncumbent Risks
• Taking A Fresh Look at Ovarian Hyperstimulation Syndrome (OHSS), its Presentation, Prevention and Management
• Preventing Severe Ovarian Hyperstimulation Syndrome (OHSS) with “Prolonged Coasting”
• IVF Outcome in Patients with Polycystic Ovarian Syndrome (PCOS): Minimizing the Risk of Severe Ovarian Hyperstimulation Syndrome (OHSS) and optimizing Egg/Embryo Quality.
• Understanding Polycystic Ovarian Syndrome (PCOS) and the Need to Customize Ovarian Stimulation Protocols.
• IVF & Polycystic Ovarian Syndrome (PCOS): Reducing the Risk of Severe Ovarian Hyperstimulation Syndrome (OHSS), Improving Egg Quality and Optimizing Outcome.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Elizabeth Harring

Hi Dr. Sher. I so appreciate your website and the wealth of information. I am writing and wondering if I am kind of out of protocol options. I did an IUI with donor sperm 1.5 years ago and ended up with a ruptured ectopic pregnancy, losing my left tube at the time they used 4 injections of methotrexate, to no avail. Prior to that I had no fertility issues, having a pregnancy earlier in life. After losing my left tube my right ovary was never the one to ovulate so I moved to IVF.
I am 35 with an AMH of 0.9.
First round-birth control, 150 gonal f 150 menupour, 12 eggs at baseline, four eggs took off, four retrieved, resulting in 2 day 5 morulas that didn’t implant with fresh trasfer.
Second round- birth control, 9 days of lupron, 300 gonal f, 300 meupour 13 at baseline, four eggs took off again, 3 retrieved resulting in 2 morulas on day five again and a chemical pregnancy with transfer.
I took off 3 months, added supplements, acupuncture currently in my 3rd round using estogen priming with a patch, 3 days of cetrotide then 300 gonalf 150 menopur (which has already been bumped to 300) and 8 days of omnitrope, basically seeing the same results even though this time I had 20 at baseline only 4 are growing.
It feels as though I have done every priming method and even though the follicles are there are baseline they are not growing. My doctor said that my body “doesn’t like IVF meds”. Its hard to understand since I have done every test available and all come back normal. I asked about “mini ivf” since maybe the drugs are too much, but my dr said that is not an option for me.
Any advice?

reply
Dr. Geoffrey Sher

In my opinion, given that based upon your AMH, you have diminished ovarian reserve, you would likely benefit from a revised and individualized protocol for ovarian stimulation.

Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Harish Vasan

Hi Dr Sher,

What is your view on HCG injection of 2000 IU twice (3 days post and 6 days post an embryo transfer)? Does it help with implantation/luteal phase support?

reply
Dr. Geoffrey Sher

In my opinion, it does not help and it confuses interpretation of the blood quantitative pregnancy testb result. I do not do this.

Geoff Sher

reply
Lynsey

Good morning Dr. Sher. Thank you for creating this blog and all the time you in for those of us in the world of IVF. Every time I have an IVF or fertility related question, I enter the question into a search engine and then write “Dr. Sher” after and always find an answer. This time I couldn’t find anything, so I hope you don’t mind answering. Is it normal to have scanty periods after coming off of birth control and lupron? I do not have a full flow when coming off the two for IVF so I am never sure which day is cycle day one. Thank you for your time.

Lynsey

reply
Dr. Geoffrey Sher

Thanks Lynsey.

The amount of flow is usually irrelevant. Regular cyclicity is far more important

Geoff Sher

reply
I.V.

Hello from Finland!

First off, thank you for your blog – it’s helped me understand a lot about my situation and IVF in general.

I’m 31 and have a slightly complex history – I’ve had 4 IVFs (4th one currently ongoing), endometriomas + surgery induced DOR (AMH 0,36 a year ago), currently have one 3cm endometrioma on the “better” ovary, making it now the worse performing one. AFC before any IVFs has been around 6, periods and ovulation come consistently and at regular intervals. FSH, estrogen, LH etc tests have never been taken.

My last three IVF stims have been with the same meds – elonva + pergoveris, differing in the amounts used. For this round we had 2 month lupron down-regulation to help with the endometriosis, others have been without any downregulation . My question is – in all of the last three rounds I’ve only gotten to 2-3 punction-worthy follicles, and the case seems to be so also in this one. My doctor swears that elonva and pergoveris are the best meds for my situation, and that they should encourage all of the follicles to start growing. This clearly isn’t the case, so would a change in protocol or meds be worthwhile to try? Or is it so that I’m just not responding to meds as planned, and nothing will change that? My google-search and medical know-how are meeting their limit on this question.

Thank you in advance for any thoughts on the question.

Best regards,

I.V.

reply
Dr. Geoffrey Sher

I very respectfully would differ from the opinion you received and given your diminished ovarian reserve , I would favor a different approach to stimulation. Also please take in to consideration the possible effect of endometriosis on IVF outcome.

1. Diminished ovarian Reserve:

Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy

B. Endometriosis and IVF

When women with infertility due to endometriosis seek treatment, they are all too often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this communication!
Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.
So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.

So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:
1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa). This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), increasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy. The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.
IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice. I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly. • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride” • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS) • The Fundamental Requirements For Achieving Optimal IVF Success • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols. • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF: • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management: (Case Report) • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID) • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy! • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year • A personalized, stepwise approach to IVF • How Many Embryos should be transferred: A Critical Decision in IVF? • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice. • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF • Treating Ovarian Endometriomas with Sclerotherapy. • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options. • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF). • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s & • Induction of Ovulation with Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its use • Clomiphene Induction of Ovulation: Its Use and Misuse! ______________________________________________________ ADDENDUM: PLEASE READ!! INTRODUCING SHER FERTILITY SOLUTIONS (SFS) Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Dilly Bars

Hello sweet doctor. It’s amazing all the help that you daily give to women in need of your wisdom. Thank you for all that you do in this world. You’re an amazing person.

Will a baseline ultrasound be just as good on cycle day two as it would on cycle day one? Then, is it true that the body has already selected a dominant follicle by cycle day 3? I ask because I have a choice to start stimming cycle day 2 or 3. Three would work better for me because of my schedule but I can also do cycle day 2 with no problems. I am using your protocol and I’m very excited

reply
Dr. Geoffrey Sher

Day 3 would be fine for a baseline. And by day 5, the dominant follicle has been selected.

Geoff Sher

reply
Dr. Geoffrey Sher

Yes…but selectively. As an example, if thge embryo has been biopsied for PGS, a rent has already been made in its envelopment (zona pellucida), making AH redundant.

Good luck!

Geoff Sher

reply
Jillian

Hi Dr. Sher,
Do you have the ability to treat out of state patients? I live in MA…

reply
Dr. Geoffrey Sher

That is precisely what I do! 80% of my patients journey to one of our SFS centers in LA or NY.

Call my assistant, Patti (702-533-2691) and set up an online consultation with me to discuss your case in detail.

Geoff Sher

reply
Rhian Thomas

Hi Dr Sher,
I hope you’re well.
Does prednisone cross the placenta? I’m 9w 2days and have been taking 20mg daily as part of an immune protocol. I’m stopping at 12 weeks.
Thanks as always for your support!

reply
Rhian Thomas

Thanks Dr Sher. I’ve been told that prednisone does not cross the placenta in 1st trimester so that’s interesting to hear. Are there any safety concerns/negative concerns for baby taking 20mg a day until 12 weeks? I’m scared now :-/
Thanks as always,
Rhian

reply
Rhian Thomas

Sorry I think my question got lost in my wordy response. Any safety concerns to baby taking 20mg of prednisone in 1st trimester only?

Dr. Geoffrey Sher

Not really! I usually advise tailing it down and stopping by the end of the 10th-12th week!

Geoff Sher

Casey

Dear Dr Sher,

I hope this email finds you well and happy!

I am 41 and have completed one round of IVF with a donor sperm and I have 3 euploid embryos that have been cryopreserved.

I decided to undergo another round of IVF, to hopefully collect some further genetically balanced embryos and to try different sperm. I’ve since learned that there are donors that don’t simply donate for the money but in fact want to meet the offspring in the future and will welcome them into their families (in the UK, this is 18 years of age). This sort of donor is more appealing to me, hence the reason I’ve opted to try IVF again.

I have started the IVF process again, having had my baseline scan 4 days ago and am due for next scan tomorrow. However, something has urgent come up in work life which means I need to cancel this cycle. My question is, will this potentially impact negatively on outcomes of IVF, i.e. I have taken 4 days of 150ml of Menopur (same dose as last time) and I’m wondering if aborting now will have an negative impact on follicles next time/next month ? If the answer is, yes, possibly, then maybe I should proceed with IVF now rather than delay by a month.

I’m very grateful for your time and help in advance.

Best wishes and kindest regards!
Casey

reply
Dr. Geoffrey Sher

In my opinion, it should in no way impact IVF in future cycles.

Good luck!

Geoff Sher

reply
Ashton

I am hoping you can answer for me . When I had a baby a few years ago, the catheter they used on me in labor and delivery was very uncomfortable. I could feel it the whole time and it made me feel like i frequently had to urinate. Ever since then, I can’t get rid of that feeling in my bladder. I have to urinate 5-6 times an hour at night and at least two times an hour during the day. When I am sleeping is the only time I get a break and if I even slightly wake up at night , have to pee or else it will keep me up all night. It doesn’t feel like a bladder infection. I have had them as a teenager and one in the last year. It’s not the same. It’s not a burning or painful sensation or feeling like I can’t completely empty my bladder. I just have to go all the time and it’s just feels like an urgency to pee all the time. I do drink a lot of water and always have but it still shouldn’t be that I have to pee all the time. But any few sips I have I feel like it goes right through me. Sometimes I’m in disbelief that I am able to urinate so much back to back. Like sometimes I expect just a sprinkle because I just went 15 minutes ago and it’s a full pee. What could be wrong? And could the catheter have caused this? I’ve done a lot of ivf and am still doing so, so I’ve been tested all the time for infections,, stds… and take routine antibiotics for transfers. Please help.

reply
Dr. Geoffrey Sher

You need to see a Uro-gynecologist. It is possible that your bladder was traumatized with the birth of your child. This can sometimes lead to what we call Bladder Dyssynergia. It can be treated and it should be.

Good luck!

Geoff Sher

reply
Ashton

I knew you would know. Thank you. Is it also possible that endometriosis is causing this? I am also going to call the doctor tomorrow and ask about bladder dyssynergia. You’re amazing thank you.

reply
Dr. Geoffrey Sher

You are welcome!

Yes, bladder endometriosis can cause bladder irritability (dyssynergia).

G-d bless!

Geoff Sher

reply
Panda R

Hello Dr. Sher

I have a frozen embryo protocol that is very similar to yours. The main difference is I stay on 10 units of lupron until progesterone is started . Braverman also added letrozole for 5 days starting 12 days before transfer to address the lack of protein adhesives in the uterus in women with endometriosis. This worked for me and for the first time in my life I became pregnant and had a baby. He also treated my immune system with the usual, IVIg, prednisone, lovenox. Everything else seems to be the same as your protocol.

My question is what is the difference between the 10 units of lupron and 5 like in your protocol? I don’t think I had a period for this but maybe i did. It was so long ago I can’t remember.

If you were to do this protocol and not take birth control would stopping the lupron when you start progesterone induce a period?

reply
Dr. Geoffrey Sher

10U Lupron is unnecessary, but is is OK. I would stop the Lupron when progesterone therapy is inotiated.

Until less than a decade ago, most women undergoing IVF would have embryos transferred to the uterus in the same cycle that the egg retrieval was performed (“Fresh” Embryo Transfer). This was because embryo cryopreservation (freezing) was a hazardous undertaking. In fact, it resulted in about 30% not surviving the freezing process and those that did, having about one half the potential of “fresh embryos to implant and propagate a viable pregnancy. The main reason for the high attrition rate associated with embryo cryopreservation is that the “conventional” freezing” process that was done slowly and this resulted in ice forming within the embryo’s cells, damaging or destroying them. The introduction of an ultra-rapid cryopreservation process (vitrification) freezes the embryos so rapidly as to avoid ice crystals from developing. As a result, >90% survive the freeze/thaw process in as good a condition as they were prior to being frozen and thus without being compromised in their ability to propagate a viable pregnancy.
Recently, there have been several articles that have appeared in the literature suggest that an altered hormonal environment may be the reason for this effect. There have also been reports showing that when singletons (pregnancy with one baby) conceived naturally are compared to singletons conceived through a “fresh” embryo transfers they tend to have a greater chance of low birth weight/prematurity. This difference was not observed in babies born following FET. Hence, there is a suspicion that the altered hormonal environment during the fresh cycle may be the causative factor.
Available evidence suggests that FET (of pre-vitrified blastocysts) is at least as successful as is the transfer of “fresh” embryos and might even have the edge. The reason for this is certainly unlikely to have anything to do with the freezing process itself. It more than likely has to do with two factors:
a) An ever increasing percentage of FET’s involve the transfer of PGS-tested, fully karyotyped, euploid blastocysts that have a greater potential to propagate viable pregnancies, than is the case with “fresh” ET’s where the embryos have rarely undergone prior PGS selection for “competency”…and,
b) With targeted hormone replacement therapy for FET, one is far better able to better to optimally prepare the endometrium for healthy implantation than is the case where embryos are transferre3d following ovarian stimulation with fertility drugs.
There are additional factors other than method used for embryo cryopreservation that influence outcome following FET. These include
• An emerging trend towards selective transferring only advanced (day 5-6) embryos (blastocysts).
• (PGS) to allow for the selective transfer of genetic competent (euploid) embryos
• Addressing underlying causes of implantation dysfunction (anatomical and immunologic uterine factors) and
• Exclusive use of ultrasound guidance for delivery of embryos transferred to the uterus.
Against this background, the use of FET has several decided advantages:
• The ability to cryostore surplus embryos left over after fresh embryo transfer
• The ability to safely hold embryos over for subsequent transfer in a later frozen embryo transfer (FET) cycle (i.e. Staggered IVF) in cases where:
1. Additional time is needed to perform preimplantation Genetic testing for embryo competency.
2. In cases where ovarian hyperstimulation increases the risk of life-endangering complications associated with critically severe ovarian hyperstimulation syndrome (OHSS).
3. To bank (stockpile) embryos for selective transfer of karyotypically normal embryos in older women or those who are diminished ovarian reserve
4. The ability to store embryos in cases of IVF with third party parenting (Egg Donation; Gestational Surrogacy and Embryo donation) and so improve convenience for those couples seeking such services.
Preimplantation Genetic Sampling with FET:
The introduction of preimplantation genetic sampling (PGS) to karyotyping of embryos for selective transfer of the most “competent” embryos, requires in most cases that the tested blastocysts be vitribanked while awaiting test results and then transferred to the uterus at a later date. Many IVF programs have advocated the routine use of PGS in IVF purported to improve IVF outcome. But PGS should in my opinion should only be used selectively. I do not believe that it is needed for all women undergoing IVF. First there is the significant additional cost involved and second it will not benefit everyone undergoing IVF, in my opinion.
While PGS is a good approach for older women and those with diminished ovarian reserve (DOR) and also for woman who experience recurrent pregnancy loss (RPL) or “unexplained” recurrent IVF failure recent data suggests that it will not improve IVF success rates in women under 36Y who have normal ovarian reserve, who represent the majority of women seeking IVF treatment. Nor is it needed in women (regardless of their age) undergoing IVF with eggs donated by a younger donor. This is because in such women about 1:2/3 of their eggs/embryos are usually chromosomally normal, and in most cases will upon fertilization produce multiple blastocysts per IVF attempt, anyway. Thus in such cases the transfer of 2 blastocysts will likely yield the same outcome regardless of whether the embryos had been subjected to PGS or not. The routine use of
It is another matter when it comes to women who have diminished ovarian reserve and/or DOR contemplating embryo banking and for women with unexplained recurrent IVF failure, recurrent pregnancy loss and women with alloimmune implantation dysfunction who regardless of their age or ovarian reserve require PGS for diagnostic reasons.
Embryo Banking: Some IVF centers are doing embryo banking cycles with Preimplantation Genetic Screening (PGS). With Embryo Banking” several IVF cycles are performed sequentially (usually about 2 months apart), up to the egg retrieval stage. The eggs are fertilized and the resulting advanced embryos are biopsied. The biopsy specimens are held over until enough 4-8 blastocysts have been vitribanked, thus providing a reasonable likelihood that one or more will turn out to be PGS-normal. At this point the biopsy specimens (derived all banking cycles) are sent for PGS testing at one time (a significant cost-saver), the chromosomally normal blastocysts are identified and the women are scheduled for timed FET procedures….. with a good prospect of a markedly improved chance of success as well as a reduced risk of miscarriage.
Standard (proposed) Regimen for preparing the uterus for frozen embryo transfer FET) is as follows:

The recipient’s cycle is initiated with an oral contraceptive-OC (e.g. Marvelon/Lo-Estrin; Lo-Ovral etc) for at least 10 days. This is later overlapped with 0.5 mg. (10 units) Lupron/Lucrin (or Superfact/Buserelin) daily for 3 days. Thereupon the OC is withdrawn and daily 0.25 mg (5 units) of Lupron/Lucrin/Superfact injections are continued. Menstruation will usually ensue within 1 week. At this point, an ultrasound examination is performed to exclude ovarian cyst(s) and a blood estradiol measurement is taken (it needs to be <70pg/ml). The daily Lupron/Lucrin/Superfact is continued until the initiation of progesterone therapy (see below).

Four milligram (4mg) Estradiol valerate (Delestrogen) IM is injected SC, twice weekly (on Tuesday and Friday), commencing within a few days of Lupron/Lucrin/Superfact-induced menstruation. Blood is drawn on Mondays and Thursdays for measurement of blood [E2]. This allows for planned adjustment of the E2V dosage scheduled for the next day. The objective is to achieve a plasma E2 concentration of 500-1,000pg/ml + an endometrial lining of >8mm, as assessed by ultrasound examination done after 10 days of estrogen exposure i.e. a day after the 3rd dosage of Delestrogen. The twice weekly, final (adjusted) dosage of E2V is continued until pregnancy is discounted by blood testing or an ultrasound examination. Dexamethasone 0.75 mg is taken orally, daily with the start of the Lupron/Lucrin/Superfact. This is continued until the 10th week of pregnancy or until pregnancy is discounted, at which point it is slowly tailed off over a 2 week period and stopped. Oral folic acid (1 mg) is taken daily commencing with the first E2V injection and is continued throughout gestation. Patients also receive Ciprofloxin 500mg BID orally starting with the initiation of Progesterone therapy and continuing for 10 days.

Luteal support commences 6 days prior to the ET, with intramuscular progesterone in oil (PIO) at an initial dose of 50 mg (P4-Day 1). Thereupon, (from the following day) , progesterone administration-Day 2, PIO is increased to 100 mg daily continuing until the 10th week of pregnancy, or until a blood pregnancy test/negative ultrasound (after the 6-7th gestational week), discounts a viable pregnancy.

Also, commencing on the day following the ET, the patient inserts one (1) vaginal progesterone suppository (100 mg) in the morning + 2mg E2V vaginal suppository (in the evening). This is continued until the 10th week of pregnancy or until pregnancy is discounted by blood testing or by an ultrasound examination done at the 6-7th gestational week. Dexamethasone 0.75mg is continued to the 10th week of pregnancy (tailed off from the 8th to 10th week) or as soon as pregnancy is ruled out. With the obvious exception of the fact that embryo recipients do not receive an hCG injections, luteal phase and early pregnancy hormonal support and immuno-suppression is otherwise the same as for conventional IVF patients. Blood pregnancy tests are performed 13 days and 15 days after the first P4 injection was given.

Note: Alternative progestational therapy in cases where intramuscular progesterone is not used: One (1) vaginal application of Crinone 8% is administered on the 1st day (referred to as luteal phase day 0 – LPO). On LP Day 1, they will commence the administration of Crinone 8% twice daily (AM and PM) until the day of embryo transfer. Withhold Crinone on the morning of the embryo transfer and resume Crinone administration in the PM. Crinone twice daily is resumed from the day after embryo transfer. Contingent upon positive blood pregnancy tests, and subsequently upon the ultrasound confirmation of a viable pregnancy, administration of Crinone twice daily are continued until the 10th week of pregnancy.

Regime for Thawing and Transferring Cryopreserved Embryos/Morulae/Blastocysts:

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Amy

Hi Dr Sher,
I am 33. I have a 15 month old son from IVF (before this I tried for 2.5 years naturally and never had a positive Pregancy tests). I have partial DQ alpha match with my husband. And 5 HLA matches altogether. Before having my son I had K-562 done and it showed high NK cells. Uterine biopsy also showed high NK cells.

My first FET for my son worked with immune protocol (LIT, Intralipids, 1mg dexamethasone, clexane).
I have just attempted another FET with a PGS tested embryo and the same protocol as above but it ended in a brief chemical pregnancy.

I am wondering if I should stick to this protocol for next FET? Or add IVIG? I have two more PGS normal embryos and 5 untested.

What do you think my chances of conceiving a second child are now? I consulted with you in 2018 and you told me it was possible to conceive my first (but is it going to be harder for me now for the second?)
Thank you

reply
Dr. Geoffrey Sher

I would stay with the same protocol because 1: 2 embryos will match and if you transfer one (see below), there is therefore a 50%v chance it will match with your DQalpha. Since there is no way of knowing which will match and given that if there is a match, that embryo will not establish a viable pregnancy regardless of treatment, it is likely that the last transfer was with a matching embryo.

Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in an IID when there both a DQa/HLA match exists along with NK cell activation. With the exception of cases where both partners have a total (absolute DQa match and treatment requires the use of sperm from a non-matching sperm donor, about 90% of cases alloimmune implantation will have a partial match where 1: 2 embryos will match the woman’s DQalpha genotype and half will not. In cases of an alloimmune dysfunction (with associated NKa), treatment with IL or IVIG will in my opinion, will not protect against a matching embryo being rejected. It can only clear the NK environment for an embryo that does not match the woman’s DQalpha genotype. For this reason, it is my opinion that only 1 embryo should be transferred at a time because, given the fact that i:2 embryos will match, transferring >1 embryo at a time creates a risk that the matching embryo will evoke a local NKa/’cytokine response that will “muddy the water” for both. Thus, in cases of a “partial” DQalpha match I recommend against transferring more than a single embryo at a time.

Good luck!

Geoff Sher

reply
Laura

Hi Dr. Sher,
I am 34 years 9 months currently and had a failed first round of IVF in June. (Low AMH: 1.23, Protocol: 13 days down-regulation with birth control pills, 225 Gonal F and 300 IU Menopur for 12 days, 6 eggs retrieved, 5 mature, 3 fertilized, 2 Blastocysts but both PGS abnormal). Currently on Round 2 which was a Menopur only + HGH (Downregulation for 12 days, then 450 IU Menopur for first 3 days and 600 IU Menopur for 7 days. 25 units HGH for each of 10 days), 6 eggs retrieved, only 2 mature, both of which fertilized. Waiting currently to see what happens after 5 days. On Day 9 of stimulation, follicles showed uneven growth with a smaller group of three (less than 12 mm) and a larger group of two grown too much (greater than 22 mm). Would it be possible to tell why that might happen with this protocol?

reply
Dr. Geoffrey Sher

Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Jazmin

My HCG is 13,995 and got u/ done 3 times but the doctor can not see a sac or yolk in the uterus. I’ve had several spotting issues since I found out I was pregnant. According to LMP I’m supposed to be 7 weeks but according to HCG I’m 6 weeks and again nothing shows in the u/s. Is this normal?

reply
Dr. Geoffrey Sher

I am very concerned that this is an ectopic (tubal) pregnancy.

Approximately 1 out of every 100 embryos will implant and grow outside of the uterine cavity (almost always) in a fallopian tube. This is defined as an ectopic pregnancy. Infrequently, an ectopic pregnancy attaches to an ovary or to one or more other pelvic organs. On very rare occasions (1;1,000), one twin attaches and grows in the uterine cavity with the other growing outside the uterus (i.e. a heterotopic pregnancy).
There is an ever present risk that a tubal (ectopic) pregnancy might rupture causing potentially catastrophic internal hemorrhage. Accordingly any symptoms suggesting that such bleeding has started, requires immediate confirmation of the diagnosis followed by emergency treatment.
While on rare occasions, an extrauterine (ectopic) can proceed well into pregnancy, it almost always happens prior to the 8th week. There is an increase in the incidence of ectopic pregnancy after IVF conceptions where it reportedly occurs in about 3% of cases and a woman who has had one ectopic pregnancy has almost four times as great a risk of an ectopic in a future pregnancy. In fact with every subsequent ectopic this risk of a recurrence increases dramatically.

The fertilization of the human egg normally takes place in the fallopian tube. The embryo then travels into the uterus, where it implants into the endometrial lining 5-6 days after ovulation. Anything that delays the passage of the embryo down the fallopian tube can result in the embryo hatching and sending its “root system” into the wall of the fallopian tube and initiating growth within the tube. One of the most common predisposing factors is pelvic inflammatory disease (PID) in which microorganisms, such as Chlamydia, and Gonococcus damage the inner lining (endosalpinx) and eventually also the muscular walls of the tube(s) by the formation of scar tissue. The endosalpinx has a very complex and delicate internal architecture, with small hairs and secretions that help to propel the embryo toward the uterine cavity. Once damaged, this lining can never regenerate. This is one of the reasons why women who manage to conceive following surgery to unblock fallopian tubes damaged by PID, have about a 1:4 chance of a subsequent pregnancy developing within the fallopian tube (ectopic).

Congenital malformations of the fallopian tube, associated with shortening of, or small pockets and side channels within, the tube are capable of interrupting the smooth passage of the embryo down the fallopian tube, is another cause of an ectopic pregnancy.

Since the lining of the fallopian tube does not represent an optimal site for healthy implantation, a large percentage of pregnancies that gain early attachment to its inner lining will usually be absorbed before the woman even knows that she is pregnant. This is often referred to as a tubal abortion.

The advent of advanced sonographic and hormonal monitoring technology now makes it possible to detect an ectopic pregnancy much earlier than previously, …usually well in advance of it rupturing. A decade or two ago, the diagnosis of an ectopic pregnancy, ruptured or not, was an indication for immediate laparotomy to avoid the risk of catastrophic hemorrhagic shock. This often resulted in the affected fallopian tube having to be completely removed, sometimes along with the adjacent ovary. In the late 1980’s, early conservative surgical intervention by laparoscopy began replacing laparotomy (a wide incision made in the abdominal wall) for the treatment of ectopic pregnancy, often allowing the affected fallopian tube to be preserved and shortening the period of post-surgical convalescence. In the 90’s, early detection combined with the advent of medical management with methotrexate (MTX) has all but eliminated the need for surgical intervention in the majority of patients. If administered early enough, MTX will allow spontaneous resorbtion of the pregnancy and a dramatic reduction in the incidence of catastrophic bleeding. This was especially true in ectopic pregnancies arising from In Vitro Fertilization, where the early progress of pregnancy is usually carefully monitored with hormone levels and ultrasound.

Classically women with an ectopic pregnancy present with the following symptoms:

• Missed menstrual period: Although some patients will have spotting or other abnormal bleeding. The pregnancy test will be positive in such cases.

• Vaginal bleeding. When a pregnancy inadvertently implants in the fallopian tube the lining of the uterus undergoes profound hormonal changes associated with pregnancy (primarily associated with the hormone progesterone). When the embryo dies, the lining of the uterus separates. Initially, vaginal bleeding is dark and usually is quite scanty, even less than with a normal menstrual period. In some cases, of ectopic pregnancy will bleeding is more severe, similar to that experienced in association with a miscarriage. This sometimes leads to an ectopic pregnancy initially being misdiagnosed as a miscarriage and is the reason to examine the material that is passed vaginally, for evidence of products of conception.

• Pain. In the early stages this is typically cramp-like in nature, located on one or another side of the lower abdomen. It is caused by spasm of the muscular wall of the fallopian tube(s). When a tubal pregnancy ruptures the woman will usually experience an abrupt onset of severe abdominal followed by light headedness, coldness and clamminess and will often collapse due to shock. Her pulse will become rapid and thready and her blood pressure will drop. Miscarriage. Sometimes the woman will experience pain in the right shoulder. The reason for this is that that blood which tracts along the side of the abdominal cavity finds its way to the area immediately below the diaphragm, above the liver (on the patient’s right side), irritates the endings of the phrenic nerve, which supplies that part of the diaphragm. This results in the referral of the pain to the neck and the right shoulder. The clinical picture is often so typical that making the diagnosis usually presents no difficulty at all. However, with less typical presentations the most important conditions to differentiate from an ectopic pregnancy are: a ruptured ovarian cyst, appendicitis, acute pelvic inflammatory disease (PID), or an inevitable

• Vaginal bleeding. When a pregnancy inadvertently implants in the fallopian tube the lining of the uterus undergoes profound hormonal changes associated with pregnancy (primarily associated with the hormone progesterone). When the embryo dies, the lining of the uterus separates. Initially, vaginal bleeding is dark and usually is quite scanty, even less than with a normal menstrual period. In some cases, of ectopic pregnancy will bleeding is more severe, similar to that experienced in association with a miscarriage. This sometimes leads to ectopic pregnancy initially being misdiagnosis as a miscarriage and is the reason that we often want to examine the material that is passed vaginally, for evidence of products of conception.

The easiest and most common method of diagnosing an ectopic pregnancy is by tracking the rate of rise in the blood levels of hCG. With a normal intrauterine pregnancy, these usually double every two days throughout the first few weeks. While a slow rate of increase in blood hCG usually suggests an impending miscarriage, it might also point to an ectopic pregnancy. Thus the hCG blood levels should be followed serially until a clear pattern emerges.

A vaginal ultrasound examination usually will clinch the diagnosis by showing the ectopic pregnancy within a fallopian tube and if the tube has already ruptured or internal bleeding has occurred, ultrasound examination will inevitably detect the presence of free fluid into the abdominal cavity.

If there has been a significant amount of intra-abdominal bleeding, irritation of the peritoneal membrane will cause the abdominal wall to become hard tense and, depending on the amount of internal bleeding abdominal distention will be evident. Palpation of the abdominal wall will evoke significant pain and when a vaginal examination is done, movement of the cervix will produce excruciating pain, especially on the side of the affected fallopian tube.

Surgical Treatment: In questionable situations laparoscopy is usually performed for diagnostic purposes. If an ectopic pregnancy is in fact detected, a small longitudinal incision over the tubal pregnancy will allow its removal, without necessitating removal of the tube. (linear salpingectomy). Bleeding points on the fallopian tube can usually be accessed directly and appropriately ligated (tied) via the laparoscope. Sometimes the damage to the fallopian tube has been so extensive that the entire tube will require removal.

On occasions where very severe intra-abdominal bleeding heralds a potential catastrophe, a laparotomy (an incision made to open the abdominal cavity) is performed to stop the bleeding post haste. In such cases a blood transfusion is usually required and may be life saving.

Medical Treatment: The introduction of Methotrexate (MTX) therapy for the treatment of ectopic pregnancy has profoundly reduced the need for surgery in most patients. MTX is a chemotherapeutic that kills rapidly dividing cells, such as those present in the “root system” of the conceptus. Extremely low doses of MTX are used to treat ectopic pregnancy. Accordingly the side effects that are often associated with such chemotherapy used for the treatment of other conditions are seldom seen. It is important to confirm that the ectopic pregnancy has not yet ruptured prior to administering MTX.

MTX is given by intramuscular injection. Prior to its administration, blood is drawn to get a baseline blood hCG level. After the injection of MTX the patient is allowed to return home with strict instructions that she should always have someone with her and never be alone in the ensuing week. The concern is that were the patient to be on her own and an intraabdominal bleed were to occur, she might not readily be able to access someone who could get her to the hospital immediately. Instructions are also given to look for early signs that might point towards severe intra-abdominal bleeding such as the sudden onset of severe pain, light-headedness or fainting.

The patient returns to the doctor’s office four days later to check the blood hCG level. Three days later (7 days after MTX), the level is checked again. By this time the hCG level should have dropped at least 15% from the value on day 4. If not, a second MTX injection is given and the blood levels are tested twice weekly until hCG level is undetectable. Once this occurs, vaginal bleeding will usually ensue within a week or two.

It is important to note, especially in cases where more than one embryo or blastocyst has been transferred to the uterine cavity or fallopian tube (as with Tubal embryo transfer –TET/ZIFT), that implantation may occur in two sites simultaneously (i.e. in the fallopian tube as well as inside the uterine cavity). This is referred to as a heterotopic pregnancy. It is therefore important that before administering MTX, which will cause the death and absorption of any early pregnancy, that the physician makes certain that he/she is not dealing with a heterotopic pregnancy. In such cases, surgery is required to treat the tubal ectopic, while every precaution is taken to protect the pregnancy growing within the uterine cavity.

When an ectopic pregnancy occurs following infertility treatment, there is the added advantage that the physician will be on the lookout for the earliest possible signs of trouble. The performance of a vaginal ultrasound within two weeks of a positive blood pregnancy (HCG) test following IVF allows for early detection of the unruptured pregnancy and timely intervention with MTX and/or laparoscopy.

Geoff Sher
PH: 702-533-2691

reply
Sophia

Hi Dr Sher,

Is there an optimal duration of E2 administration prior to staring progesterone for FET? I’m currently on Day 7 of E2 (injection & vaginal) and lining was 6.3mm. The timing of when my transfer would be based on my lining progression conflicts with an important work event that I’d ideally not miss, so was hoping to push transfer back by about a week- which would put me at 22 days of E2 prior to starting PIO. Would this adversely affect my chances of success by delaying the transfer by 1 week of additional E2- even though technically my lining would’ve been ready sooner?

reply
Dr. Geoffrey Sher

In my opinion, you need at least 10 days on the estradiol prior to starting progesterone. The lining (at that time needs to be >8mm to proceed…in my opinion.

Geoff Sher

reply
Sophia

Thank you for the reply. Is there a maximum duration that is ideal for estrogen? E.g. lower success rates with longer exposure?

reply
Dr. Geoffrey Sher

Ideally 10-14 days. However,the length of time on the estrogen is not really that important!

Geoff Sher

reply
Ruth

Hi Dr Sher,
I am 32 with a low AMH. (1.9 pmol/l). I had a failed cycle of IVF (poor responder (3 follicles) and subsequently no oocytes retrieved (hcg afterwards was within range so I seemingly did absorb it). My AFC only 9 months ago was 12, and AMH was 17 pmol/l). This is all very confusing, and my doctor is also a bit stumped. We are proceeding to natural cycle IVF. What do you think is going on? Any suggestions or comments you have would be really appreciated.

reply
Dr. Geoffrey Sher

It is hard to believe that with 12 antral follicles and an AMH of 19pmol/L you now have such a low AMH level. In my opinion, this needs to be reevaluated by repeating the AFC as well as the AMH and also measuring FSH/LH and Inhibin B on the 1st, 2nd or 3rd day of your menstrual cycle.

Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Jodi

I am 40 years old and I have a low level +9 (40%) and a High level -2(60%). Would you transfer and if so would you prioritize one over the other Thanks!

reply
Emily H

Hi Dr Sher, I had POA at 31 yrs old (FSH was 18.9!) and tested high for ANA, and finally got pregnant after three years on my third IVF/FET which included a protocol of CoQ10+DHEA prior to the stims and prednisone+lovenox post transfer. I had a diagnosis of a type of ‘skinny’ PCOS called ‘burning out’ PCOS – I ovulated (crappy eggs) perfectly normally and had no other structural issues. Baby #1 born at term with no issues. At 8m postpartum I conceived spontaneously on my first ovulation but lost it at 5w. Two weeks later at nine months postpartum, while breastfeeding, I got pregnant spontaneously and carried that baby to term with absolutely zero interventions or medication. We started trying for #3 at 12m postpartum and have had two more chemical pregnancies (both lost before 5w), in seven months of trying. I’m only taking aspirin after ovulation but also tried two cycles with supplemental progesterone with no luck. I’ve been monitored via ultrasound and am confirming ovulation with LH and BBT. Everything looks good based on testing etc, so my losses are ‘unexplained’. I’m still breastfeeding now which seems to be suppressing my FSH into a normal range to conceive. Ovulation is usually CD11/12. LP is 14/15 days long. Any insights for why I’m having repeat early miscarriages prior to 5w? And how I can prevent another loss? I’m 36 yrs old and husband is 38 yrs old.

reply
Dr. Geoffrey Sher

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Andi

Dr. Sher,

I started on Gonal F 400 units for 2 days with 37.5 units Menopur with baseline 7.5 mIU/ml. On day 3, reduce Gonal F to 200 units, and increase Menopur to 75 units. On Day 4 labs, my FSH shot up to 33.3 mIU/ml. My doctor thinks that is too high, as his protocol is whenever FSH exceeds 20 mIU/ml, he discontinues FSH stimulation drugs. He left Menopur at 75 units, and suggested to take Clomid again 50 mg. I know you believe Clomid has a deleterious effect on egg/embryo “competency”. Do you agree to stop the Gonal -F stims because FSH too high now, or adjust dosage? What’s your recommendation?

Thank you.

reply
Dr. Geoffrey Sher

I respectfully would disagree. However the decision is up to mthe “treating RE”>

Good luck!

Geoff Sher

reply
Andi

Dr. Sher,

Does the FSH # not matter after start of cycle? Is only the baseline Day 3 after menstruation FSH # that matters? I see most practitioners want that # to be under 15 mIU/ml at start of cycle.

Thanks.

reply
Dr. Geoffrey Sher

In my opinion only the3 baseline matters. However, AMH is more sensitive and specific as it pertains to ovarian reserve and the ability to predict response.

Geoff Sher

reply
Dr. Geoffrey Sher

You could,…but at 42y of age, this is not likely to be a “mosaic”

Geoff Sher

reply
Nancy Brown

Can you clarify “this is not likely to be a mosaic?”
Could any of the following self-correct? If so, which ones?
46 XX +19. Grade 3CB 45 XY +1 -9 -15 Grade 3CC 47 XX +15 Grade 4BC. 48 XY +7 +16 +17 Grade 4CC. 45 XY-16 Grade 3BB. 44 XY -16 Grade 3BB. 44 XY -7 -22 Grade 3 CC. 44XX +21 -2-10-17 Grade 1CC 45 X0 grade 4BB

reply
Dr. Geoffrey Sher

In reply to Dr. Geoffrey Sher.

1. Can you clarify “this is not likely to be a mosaic?”

The older a women becomes, the more likely it is that aneuploidy is “meiotic” rather than “mitotic (mosaicism)”. Only the latter can auto-correct (see below). Also the more chromosomes affected by aneuploidy, the less likely it is that the embryo is “mosaic”.

2. Which embryos would you transfer:

I would go with the following:ould any of the following self-correct? If so, which ones?
46 XX +19; 3CC 47 XX +15 Grade 4BC; 45 XY-16 Grade 3BB. 44 XY -16 G

Commentary:

Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or preimplantation embryo development and represents a major cause of early pregnancy loss. About a decade ago, I and my associate, Levent Keskintepe PhD were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3-fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
Many IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, growing evidence suggests that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “autocorrect”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases having occurred in my own practice. So clearly, summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring. Thus by discarding aneuploid embryos the possibility exists that we could be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.

The basis for such embryo “autocorrection” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.”
It is against this background, that an ever-increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:

1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “autocorrection”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
2. Mitotic aneuploidy (“Mosaicism”) occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically normal (euploid) early embryo mutate and become aneuploid. This is referred to as “mosaicism”. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will likely be “competent” and capable of propagating a normal conceptus.
Since some mitotically aneuploid (“mosaic”) embryos can, and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to reliably differentiate between these two varieties of aneuploidy would potentially be of considerable clinical value. The recent introduction of a variety of preimplantation genetic screening (PGS) known as next generation gene sequencing (NGS) has vastly improved the ability to reliably and accurately karyotype embryos and thus to diagnose embryo “mosaicism”.
Most complex aneuploidies are meiotic in origin and will thus almost invariably fail to propagate viable pregnancies. The ability of mosaic embryos to autocorrect is influenced by stage of embryo development in which the diagnosis is made, which chromosomes are affected, whether the aneuploidy involves a single chromosome (simple) or involves 3 or more chromosomes (complex), and the percentage of cells that are aneuploid. Many embryos diagnosed as being mosaic prior to their development into blastocysts (in the cleaved state), subsequently undergo autocorrection to the euploid state (normal numerical chromosomal configuration) as they develop to blastocysts in the Petri dish. This is one reason why “mosaicism” is more commonly detected in early embryos than in blastocysts. Embryos with segmental mosaic aneuploidies, i.e. the addition (duplication) or subtraction (deletion), are also more likely to autocorrect. Finally, the lower the percentage of mitotically aneuploid (mosaic) cells in the blastocyst the greater the propensity for autocorrection and propagation of chromosomally normal (euploid) offspring. A blastocyst with <30% mosaicism could yield a 30% likelihood of a healthy baby rate with 10-15% miscarriage rate, while with >50% mosaicism the baby rate is roughly halved and the miscarriage rate double.

As stated, the transfer of embryos with autosomal meiotic trisomy, will invariably result in failed implantation, early miscarriage or the birth of a defective child. Those with autosomal mitotic (“mosaic”) trisomies, while having the ability to autocorrect in-utero and result in the birth of a healthy baby can, depending on the percentage of mosaic (mitotically aneuploid) cells present, the number of aneuploid chromosomes and the type of mosaicism (single or segmental) either autocorrect and propagate a normal baby, result in failed implantation, miscarry or cause a birth defect (especially with trisomies 13, 18 or 21). This is why when it comes to giving consideration to transferring trisomic embryos, suspected of being “mosaic”, I advise patients to undergo prenatal genetic testing once pregnant and to be willing to undergo termination of pregnancy in the event of the baby being affected. Conversely, when it comes to meiotic autosomal monosomy, there is almost no chance of a viable pregnancy. in most cases implantation will fail to occur and if it does, the pregnancy will with rare exceptions, miscarry. “Mosaic” (mitotically aneuploid) autosomally monosomic embryos where a chromosome is missing), can and often will “autocorrect” in-utero and propagate a viable pregnancy. It is for this reason that I readily recommend the transfer of such embryos, while still (for safety sake) advising prenatal genetic testing in the event that a pregnancy results.
Given our ability to recognize “mosaicism” through karyotyping of embryos, the question arrases as to which “mosaic” embryos are capable of auto-correcting in-utero and propagating viable pregnancies. Research suggests that that virtually no autosomal monosomy embryos will propagate viable pregnancies. Thus, the transfer of such mosaic embryos is virtually risk free. Needless to say however, in any such cases, it is essential to make full disclosure to the patient (s), and to insure the completion of a detailed informed consent agreement which would include a commitment by the patient (s) to undergo prenatal genetic testing (amniocentesis/CVS) aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.

I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• A Fresh Look at the Indications for IVF
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Hereditary Clotting Defects (Thrombophilia)
• Blastocyst Embryo Transfers done 5-6 Days Following Fertilization are Fast Replacing Earlier day 2-3 Transfers of Cleaved Embryos.
• Embryo Transfer Procedure: The “Holy Grail in IVF.
• Timing of ET: Transferring Blastocysts on Day 5-6 Post-Fertilization, Rather Than on Day 2-3 as Cleaved Embryos.
• IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
• Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

Approve | | | Edit | History | Spam | Trash

reply
Nancy

Dear Dr. Sher, please help.
I am 44 an on an artificial cycle right now getting ready for an embryo transfer….
On 14 day of estrogen prep. (6 mg pills and 1 gel (1mg each) BID skin application), I experienced bloody light vaginal discharge and minor crumps. My Dr. told me to inject anti-bleeding medication Etamsylate. The spotting has stopped. She is inclined to continue with this cycle and embryo transfer which causes a great concern for me because of the spotting (I never had this in my prior IVF preps). In my opinion this cycle should be cancelled (endometrial lining has already been damaged (bloody spots) which is not compatible with the implantation.
TVU was done on day 9 of estrogen treatment and it was 9.6 mm (she did NOT start me on progesterone at that time which I hopped she would) and told me to continue with estrogen until day 17 instead. She planned on starting me on progesterone (1 , 2ml shot IM and 400 mg TV) that day. I feel the treatment is wrong.
Your thoughts, please.
I am looking forward to your reply.

reply
Mitali

Hello Dr.Sher
I’m 37 years old, did my round of IVF this month. Out of 3 embryos only 1 Embryo Blastocyst day 6 survived, now Frozen.. Cooper Genomics testing results:
-6 Monosomy -17 monosomy High Level Mosaic.
Do you think I have any chance ?

reply
Andi

Dr. Sher,

Pigging back off Jennifer’s question. My doctor doesn’t think the use of Lupron for the agonist long protocol or antagonist (e.g. Ganirelix, Cetrotide,or Orgalutron) is necessary because my LH has never risen above 4.6 mIU/ml for the entire cycle in the past for blood work done. Is there a target LH # if it remains below during cycle you feel it is safe that no drugs are required to keep LH low? What is your target LH # you want it to remain below?

Thanks

reply
Dr. Geoffrey Sher

I respectfully do not agree. I start all my stimulation cycl;es coming off a BCP and Lupro, overlap.

This having been said, you are not my patient and need to take advisement from your treating physician.

Good luck!

Geoff Sher

reply
Andi

Dr. Sher,

Is there a target LH # you are looking for as ideal to not be too high throughout the course of the cycle?

reply
Jennifer Heffler

Dr Sher- last question. For antagonist only protocol, you noted starting As soon as period starts. My MD is proposing start 2-3 days before anticipated CD1. Thoughts?

reply
Jennifer E Heffler

Dr. Sher
Thank you for your response. A quick follow up question- My doctor proposed a “modified antagonist protocol” using an antagonist 2-3 days prior to CD1, and then again later into the stim phase. It sounds like the second half of your A/ACP protocol, without the down regulation component. What are your thoughts on that protocol though it seems clear your treatment of choice is still A/ACP. Is this a watered down version of such?

Also- after two unsuccessful IVF rounds and going off BC, my usually regular cycle was thrown off slightly- about 7-10 days. I was supposed to start the above protocol (might not regardless) but 1) feel my body is still recovering? and 2) not sure how one would correctly predict when to start the antagonist if CD1 is not easy to predict in an off cycle.

reply
Dr. Geoffrey Sher

I agree that if an antagonist-only protocol is used, it is best started a) as soon as possible after the period begins and b) without launching off a BCP. You would start your treatment coming off a regular menstrual cycle (without prior use of a BCP, or any form of hormonal priming). AS soon as menstruation occurs you would start using a GnRH antagonist (e.g. Ganirelix, Cetrotide,or Orgalutron) , administered daily in combination Gonadotropins until the hCG “trigger”. This is followed by egg retrieval about 36h later.

Good luck!

Geoff Sher

reply
Gabi

Dr Sher I am 27 years old with diagnosis of pcos and only ever had a period once on my own without the help of birth control . I have tried letrazole and clomid and even that combination together then moved onto menopur and my next cycle will be elagolix and menopur . I have yet to ovulate and feeling defeated do you have any advise ?

Thanks for your time

reply
Dr. Geoffrey Sher

Hi Gabi,

Polycystic ovary syndrome (PCOS) is a common hormonal system disorder among women affecting between 5% and 10% of women of reproductive age worldwide. Women with PCOS may have enlarged ovaries that contain small collections of fluid — called follicles — located in each ovary as seen during an ultrasound. The condition is characterized by abnormal ovarian function (irregular or absent periods, abnormal or absent ovulation and infertility), androgenicity (increased body hair or hirsutism, acne) and increased body weight –body mass index or BMI. The ovaries of women with PCOS characteristically contain multiple micro-cysts often arranged like a “string of pearls” immediately below the ovarian surface (capsule).interspersed by an overgrowth of ovarian connective tissue (stroma).
PCOS is one of the most common causes of menstrual irregularities, infertility, and hirsutism, Despite an enormous effort to define its cause, the etiology of PCOS remains unclear, and there is no definite cure at this time. PCOS is clearly a heterogeneous disorder which often has a familial (genetic) basis. Infertility associated with PCOS has been attributed to numerous factors, including dysfunctional gonadotropin pituitary secretion, peripheral insulin resistance, elevated adrenal and/or ovarian androgen (male hormone) levels, and dysfunction of several growth factors. Women with this condition are often obese and insulin resistant. The compensatory hyperinsulinemia further stimulates ovarian androgen production which may be detrimental to egg maturation and there is a clear link between the degree of insulin resistance and anovulation. PCOS is also a significant long-term health risk for women, thus necessitating vigilance through regular annual examinations (non-insulin dependent diabetes mellitus, hypertension, hypercholesterolemia, cardiovascular disease and endometrial cancer). Whereas PCOS-related infertility is usually manageable through the use of fertility drugs, lifestyle changes (diet and exercise) remain a mainstay of long-term therapy. More recently, ovulation rates, circulating androgens, pregnancy rates and perhaps even first-trimester miscarriage rates have been shown to improve when insulin sensitizers like metformin are used to correct the underlying insulin resistance.
Most patients with PCOS are young and have excellent pregnancy rates with oral clomiphene. Those that require more aggressive treatments with injectable medications probably represent a subgroup of PCOS patients with severe ovarian dysfunction. These women often have explosive response to gonadotropins which can result in serious complications like Severe Ovarian Hyperstimulation Syndrome (OHSS…see below) and high order multiple births. In those women, the ability to perform “prolonged coasting” (see below) and selectively transfer fewer embryos during IVF offers a clear advantage over standard gonadotropin injections.
Egg quality in PCOS
The potential for a woman’s eggs to undergo orderly maturation, successful fertilization and subsequent progression to “good quality embryos” is in large part genetically determined. However, the expression of such potential is profoundly susceptible to numerous influences, especially intra-ovarian hormonal changes during the pre-ovulatory phase of the cycle. Proper follicular stimulation as well as precise timing of egg maturation with LH (Luteinizing Hormone) or hCG (human chorionic gonadotropin) is crucial to optimal egg maturation, fertilization and ultimately embryo quality. Both pituitary gonadotropins, LH and FSH (follicle stimulating hormone) play a pivotal but different role in follicular development. The action of FSH is mainly directed toward granulosa cell (cells lining the inside of the follicle) proliferation and estrogen production (E2). LH, on the other hand, acts primarily on the ovarian stroma (the connective tissue that surrounds the follicle) to produce androgens. While small amounts of ovarian androgens, such as testosterone, enhance egg and follicle development, over-exposure to them can have a deleterious effect. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.
Suppressing pituitary secretion of LH with gonadotropin releasing hormone (GnRH) agonists such as Lupron®, is particularly useful in PCOS. In that condition, serum LH levels are elevated, leading to stromal overgrowth, follicular arrests (so-called cysts) and high levels of androgens synthesis. It is therefore not surprising that these follicles often yield poorly developed (“immature”) eggs” at the time of egg retrieval (ET) and that “poor egg/embryo quality”, inadequate endometrial development and high miscarriage rates are common features of this condition. However, contrary to popular belief, this is not due to an intrinsic deficit in “egg quality”. Stimulation protocols geared toward optimizing follicle and egg development and avoiding over exposure to androgens correct these problems ad result in pregnancy rates similar to those of non-PCOS women. Whereas the overuse of LH-containing preparations such as Menopur® and Luveris® further aggravates this effect. In conclusion, to maximize ultimate oocyte maturation, we strongly recommend against the exclusive use of such products in PCOS patients, preferring FSH-dominant products such as Folistim®, Gonal F® or Bravelle® over a period of at least 9 days following pituitary suppression with Lupron®.
PCOS women often have a family history of diabetes and demonstrable insulin resistance (evidenced by high blood insulin levels and an abnormal 2-hour glucose tolerance test).This underlying Diabetes mellitus tendency could play a role in the development of PCOS and contribute to the development of obesity, an abnormal blood lipid profile, and a predisposition to coronary vascular disease. Women with PCOS are slightly more at risk of developing uterine, ovarian and possibly also breast cancer in later life and accordingly should be evaluated for these conditions on a more frequent basis than would ordinarily be recommended to non-PCOS women.
Most women with PCOS either do not ovulate at all or they ovulate irregularly. As a consequence thereof they in addition usually experience delayed, absent or irregular menstruation. In addition, an inordinate percentage of the eggs produced by PCOS women following ovulation induction, tend to be chromosomally abnormal (aneuploid). Rather than being due to an intrinsic egg defect being inherent in PCOS women, the poor egg quality more than likely the result of over-exposure to male hormones (predominantly, testosterone) produced by the ovarian stroma. These two factors (ovulation dysfunction and poor egg quality) are the main reasons for the poor reproductive performance (infertility and an increased miscarriage rate) in PCOS women.
PCOS patients are at an inordinate risk of severely over-responding fertility drugs, both oral varieties (e.g. Clomiphene, Serophene & Femara) and especially the injectables (e.g. Follistim, Puregon, Gonal F, Menopur and Bravelle) by forming large numbers ovarian follicles. This can lead to life endangering complications associated with sever ovarian hyperstimulation (OHSS). In addition PCOS women receiving fertility drugs often experience multiple ovulations putting them at severe risk (40%+) of high order multiple pregnancy (i.e. triplets or greater) with often devastating consequences.
VARIETIES OF POLYCYSTIC OVARIAN SYNDROME:
1) Hypothalamic-pituitary-PCOS: This is the commonest form of PCOS and is often genetically transmitted and is characteristically associated with a blood concentration of Luteinizing Hormone (LH) that is uncharacteristically much higher than the Follicle Stimulating Hormone (FSH) level (FSH is normally higher than the LH concentration) as well as high-normal or blood androgen ( male) hormone concentrations (e.g. androstenedione, testosterone and dehydroepiandrosterone -DHEA).Hypothalamic-pituitary-ovarian PCOS is also often associated with insulin resistance and in about 40%-50% of the cases.
2) Adrenal PCOS: Here the excess of male hormones are derived from overactive adrenal glands rather than from the ovaries. Blood levels of testosterone and/or androstenedione raised but here, but here, the blood level of dehydroepiandrosterone (DHEAS) is also raised, clinching the diagnosis.
3) Severe pelvic adhesive disease secondary to severe endometriosis, chronic pelvic inflammatory disease and/or extensive pelvic surgery: Women who have this type of PCOS tend to less likely to hyperstimulate in response to ovulation induction . Their. DHEAS is also is not raised.

TREATMENT OF INFERTILITY DUE TO ASSOCIATED OVULATION DYSFUNCTION:
Hypothalamic-pituitary-/ovarian PCOS: Ovulation induction with fertility drugs such as clomiphene citrate, Letrozole (Femara) or gonadotropins, with or without intrauterine insemination (IUI) is often highly successful in establishing pregnancies in PCOS women. However, IVF is fast becoming a treatment of choice (see below).

In about 40% of cases, 3-6 months of oral Metformin (Glucophage) treatment results in a significant reduction of insulin resistance, lowering of blood androgen levels, an improvement in ovulatory function, and/or some amelioration of androgenous symptoms and signs.
Surgical treatment by “ovarian drilling” of the many small ovarian cysts lying immediately below the envelopment (capsule) of the ovaries, is often used, but is less successful than alternative non-surgical treatment and is only temporarily effective. The older form of surgical treatment, using ovarian wedge resection is rarely used any longer as it can produce severe pelvic adhesion formation.
Adrenal PCOS is treated with steroids such as prednisone or dexamethasone which over a period of several weeks will suppress adrenal androgen production, allowing regular ovulation to take place spontaneously. This is often combined with clomiphene, Letrozole and/or gonadotropin therapy to initiate ovulation.
PCOS attributable to Pelvic Adhesive Disease is one variety which often is associated with compromised ovarian reserve, a raised FSH blood level and ovarian resistance to fertility drugs. In many such cases, high dosage of gonadotropins (FSH-dominant) with “estrogen priming” will often elicit an ovarian response necessary for successful ovulation induction and/or IVF. Neither steroids nor Metformin are helpful in the vast majority of such cases.
PCOS women undergoing ovulation induction usually release multiple eggs following the hCG trigger and are thus at inordinate risk of twin or higher order multiple pregnancies. They are also at risk of developing OHSS. Many now believe that IVF should be regarded as a primary and preferential treatment for PCOS. The reason is that it is only through this approach that the number of embryos reaching the uterus can be controlled and in this manner the risk of high-order multiples can be minimized and it is only in the course of IVF treatment that a novel treatment method known as “prolonged coasting” ( see below) which prevents OHSS, can be implemented
SEVERE OVARIAN HYPERSTIMULATION SYNDROME (OHSS):
As indicated above, there is an inordinate propensity for women with PCOS to hyper-respond to gonadotropin fertility drugs and in the process produce large numbers of ovarian follicles. If left unchecked this can lead to OHSS, a potentially life endangering condition. The onset of OHSS is signaled by the development of a large number of ovarian follicles (usually more than 25 in number). This is accompanied by rapidly rising plasma estradiol (E2) levels, often exceeding 3000pg/ml within 7 or 9 days of stimulation, often rapidly peaking above 6,000 pg/ml prior to hCG administration. When this happens, the risk of OHSS developing is above 80%.
Symptoms and signs of OHSS include: abdominal distention due to fluid collection (ascites), fluid in the chest cavity (hydrothorax), rapid weight gain (of a pound or more per day) due to tissue fluid retention, abdominal pain, lower back ache, nausea, diarrhea, vomiting, visual disturbances such as blurred vision and spots in front of the eyes (scotomata), a rapidly declining urine output, cardiovascular collapse and failure of blood to clot which sometimes results in severe bruising (echymosis) and frank bleeding. These symptoms and signs may appear before pregnancy can be diagnosed. If pregnancy occurs, the condition is likely to worsen progressively over a period of 3-5 weeks whereupon it rapidly resolves spontaneously over a few days. If no pregnancy occurs, the symptoms and signs all disappear spontaneously within 10-12 days of the hCG injection.
When increasing fluid collection in the abdominal cavity (ascites) starts to compromise breathing raising the head of the bed rose slightly by placing a 4-6 inch block at the base of each head post and using a few additional pillows, will sometimes help ameliorate the problem. In cases where this does not help or symptoms become severe, all or most of the fluid can readily and safely be drained through t transvaginal sterile needle aspiration (vaginal paracentesis-performed once or sometimes twice a week) can be performed once or twice weekly . The problem will usually self corrects within 10-12 days of the hCG shot if pregnancy does not occur or, by the 8th week of pregnancy.
Urine output should be monitored daily to see if it drops below about 500ml a day (about two cups and a half). A chest X-ray, to evaluate for fluid collection in the chest and around the heart should be done weekly along with blood tests for hematocrit, BUN, electrolytes, creatinine, platelet count and fibrin split products (FSP). If indicated on the basis of a deteriorating clinical situation, hospitalization might be needed for close observation and if necessary, to provide intensive care.
In all case of OHSS, the ovaries will invariably be considerably enlarged. This is irrelevant to the final outcome, unless ovarian torsion (twisting of the ovary on its axis), an extremely rare complication occurs. The latter would usually require surgical emergency surgical intervention.

It is important to know that symptoms and signs of OHSS are severely aggravated by rising hCG levels. Thus such patients should not receive additional hCG injections.
Does PCOS cause poor egg/embryo quality? It is an undeniable fact that women with PCOS undergoing IVF are commonly found to have poorly developed (“dysmorphic”) eggs, with reduced fertilization potential and yielding “poor quality embryos”. However, in the author’s opinion (which admittedly runs contrary to popular opinion), this is unlikely to be due to an intrinsic deficit in egg quality. Rather, it more likely relates to intra-ovarian hormonal changes brought about by hyperstimulation and which compromise egg development. This effect, in the author’s opinion, can often be significantly reduced through implementation of an individualized or customized ovarian stimulation protocols that minimize exposure of the developing follicles and eggs to excessive LH-induced ovarian androgens. This can be best achieved by limiting the use of LH-containing gonadotropins such as Menopur through selective institution of “prolonged coasting” (see below).
In the past, the onset of OHSS, heralded by the presence of large numbers of developing ovarian follicles and rapidly rising plasma estradiol levels often led the treating physician to prematurely administer hCG in an attempt to abruptly arrest the process and prevent escalation of risk to the patient. However the premature administration of hCG, while abruptly arresting further proliferation of estrogen producing granulosa cells in the follicles, unfortunately also prematurely arrests egg development. Since the ability of an egg to achieve optimal maturation upon hCG triggering is largely predicated upon it having achieved prior optimal development, the untimely administration of hCG which triggers meiosis, probably increases the risk of numerical chromosomal abnormalities (aneuploidy) of the egg. This in turn would lead to reduced fertilization potential, poor egg/embryo quality and low embryo implantation potential.
In women with PCOS the connective tissue that surrounding the follicles (ovarian stroma) is often characteristically overgrown (stromal hyperplasia). It is the stroma that produces androgens (mainly testosterone) in response to LH. It is this, coupled with the fact that PCOS women also often have elevated blood LH concentrations (see above) results in the excessive production of androgen hormones, which is so characteristic in PCOS. While excessive exposure of developing eggs to ovarian androgens compromises follicle and egg growth it also impairs endometrial response to estrogen, which could explain the common finding of poor endometrial thickening in many PCOS women undergoing IVF.
The obvious remedy for these adverse effects on egg and endometrial development is to employ stimulation protocols that limit ovarian over-exposure to LH and allowing the time necessary for the follicles/eggs to develop optimally, prior to administering hCG through the judicious implementation of “Prolonged coasting” (PC).

“PROLONGED COASTING”:
In the early 90’s we were the first to report on “prolonged coasting” (PC), a novel approach that protects egg quality while preventing the development of OHSS. PC has since, gained widespread acceptance as a method of choice for preventing OHSS and has established itself as the “standard of care”. It involves withholding gonadotropin therapy while continuing the administration of the GnRHa and waiting until the plasma estradiol concentration drops below 2,500 pg/ml. Thereupon hCG is administered. In such cases, regardless of the number of developed follicles or the number of eggs retrieved, these women rarely, if ever develop OHSS. It has been reported that while PC virtually eliminates the risk of life-endangering complications associated with OHSS, there are reports in the literature that “the price to pay with PC” is often a poorer fertilization rate and reduced embryo implantation potential, compromising the pregnancy”. It is the author’s opinion an experience in the development of PC that egg/embryo quality deficit likely has little to do with the process of PC, itself and can be explained as follows: When PC is initiated too early, follicle growth and development may cease (as evidenced by the estradiol level plateauing or falling immediately, rather than showing an initial continued increase), and when PC is started too late, the follicles will often become cystic, measuring >21mm by the time the estradiol level falls below the safe threshold of 2500pg/ml, and so harbor dysmorphic eggs. Thus precise timing of the initiation of PC is critical. It should in pact be initiated preemptively in all cases when there are more than 25 follicles and the plasma estradiol reaches or exceeds 2,500pg/ml in association, provided that at least 50% of the follicles measuring 14-16mm in mean diameter. Not a day sooner or a day later. If PC is initiated with precise timing, it will usually be followed by a further progressive rise in the estradiol concentration. After a few days, the estradiol level will plateau and then it will start to fall (often rapidly). The temptation to trigger with hCG before the estradiol level falls below 3000picogtrams per milliliter must be resisted …even if the level falls below 1,000pg/ml by the time hCG is given.
Since when using agonist ( Cetrotide/Ganirelix/Orgalutron) pituitary suppression throughout the stimulation phase with gonadotropins, the plasma estradiol level often under expressed follicle growth, this method of pituitary blockade should not be used in cases ( such as with PCOS) where PC might be required.

Please go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• A Fresh Look at the Indications for IVF
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• IVF and the use of Supplementary Human Growth Hormone (HGH) : Is it Worth Trying and who needs it?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Embryo Transfer: The “Holy Grail in IVF.
• IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
• Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Genetically Testing Embryos for IVF
• Staggered IVF
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Sher Fertility Solutions (SFS): An Exciting New Chapter….
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• Avoiding High Order Multiple Pregnancies (Triplets or Greater) with IVF
• The Role of Nutritional Supplements in Preparing for IVF
• Ovarian Hyperstimulation Syndrome (OHS): Its Evolution & Reducing itsIncumbent Risks
• Taking A Fresh Look at Ovarian Hyperstimulation Syndrome (OHSS), its Presentation, Prevention and Management
• Preventing Severe Ovarian Hyperstimulation Syndrome (OHSS) with “Prolonged Coasting”
• IVF Outcome in Patients with Polycystic Ovarian Syndrome (PCOS): Minimizing the Risk of Severe Ovarian Hyperstimulation Syndrome (OHSS) and optimizing Egg/Embryo Quality.
• Understanding Polycystic Ovarian Syndrome (PCOS) and the Need to Customize Ovarian Stimulation Protocols.
• IVF & Polycystic Ovarian Syndrome (PCOS): Reducing the Risk of Severe Ovarian Hyperstimulation Syndrome (OHSS), Improving Egg Quality and Optimizing Outcome.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Lindsey M Baird

I took four pregnancy tests at home and they immediately turned positive. I have been bleeding for three weeks off and on prior to the tests. I went to have my hCG and progesterone checked and the levels measured 197 and 0. I’m scared the embryo will not implant based on the progesterone level. Is there anything I can do to increase the progesterone level in hopes that the embryo will implant in the uterus?

reply
Dr. Geoffrey Sher

Lindsey!

A low progesterone is more the result of a failing implantation, rather than the cause thereof.

This does not look good to me. I would pray for the best but prepare for the worst>

Sorry!

Geoff Sher

reply
Elizabeth

Hi Dr. Sher,
I have just completed a stim cycle and am prepping for an FET. I had hoped to do a fresh but my progesterone went above 1.5 so they recommended frozen saying that it could change the receptivity of the lining. So I triggered with a double lupron and had great results. I got my period 7 days later and had baseline on CD1 and then BW and US on CD3, CD6, and CD8 today. (We are doing a natural cycle and monitoring maybe a little more than needed but that’s fine). Question is, my progesterone was 1.58, 1.66, 1.66, and 1.71 respectively. My estradiol is starting to rise and today was 119.63. Does the fact that my progesterone never really went down below 1 like it usually does change the receptivity of the lining? Does the progesterone need to be low in order to proceed with an FET? I ovulate normally and am not on any medication other than baby aspirin and some egg quality supplements that I have been on all year. Thanks for reading.

reply
Dr. Geoffrey Sher

Elizabeth,

Respectfully, to be frank, I am not a proponent of natural cycle FET’s. I prepare all my patients hormonally to better control hormonal events and more readily pinpoint the ideal window of implantation. This having been said, I do not believe that these progesterone levels will be harmful.

Until less than a decade ago, most women undergoing IVF would have embryos transferred to the uterus in the same cycle that the egg retrieval was performed (“Fresh” Embryo Transfer). This was because embryo cryopreservation (freezing) was a hazardous undertaking. In fact, it resulted in about 30% not surviving the freezing process and those that did, having about one half the potential of “fresh embryos to implant and propagate a viable pregnancy. The main reason for the high attrition rate associated with embryo cryopreservation is that the “conventional” freezing” process that was done slowly and this resulted in ice forming within the embryo’s cells, damaging or destroying them. The introduction of an ultra-rapid cryopreservation process (vitrification) freezes the embryos so rapidly as to avoid ice crystals from developing. As a result, >90% survive the freeze/thaw process in as good a condition as they were prior to being frozen and thus without being compromised in their ability to propagate a viable pregnancy.
Recently, there have been several articles that have appeared in the literature suggest that an altered hormonal environment may be the reason for this effect. There have also been reports showing that when singletons (pregnancy with one baby) conceived naturally are compared to singletons conceived through a “fresh” embryo transfers they tend to have a greater chance of low birth weight/prematurity. This difference was not observed in babies born following FET. Hence, there is a suspicion that the altered hormonal environment during the fresh cycle may be the causative factor.
Available evidence suggests that FET (of pre-vitrified blastocysts) is at least as successful as is the transfer of “fresh” embryos and might even have the edge. The reason for this is certainly unlikely to have anything to do with the freezing process itself. It more than likely has to do with two factors:
a) An ever increasing percentage of FET’s involve the transfer of PGS-tested, fully karyotyped, euploid blastocysts that have a greater potential to propagate viable pregnancies, than is the case with “fresh” ET’s where the embryos have rarely undergone prior PGS selection for “competency”…and,
b) With targeted hormone replacement therapy for FET, one is far better able to better to optimally prepare the endometrium for healthy implantation than is the case where embryos are transferre3d following ovarian stimulation with fertility drugs.
There are additional factors other than method used for embryo cryopreservation that influence outcome following FET. These include
• An emerging trend towards selective transferring only advanced (day 5-6) embryos (blastocysts).
• (PGS) to allow for the selective transfer of genetic competent (euploid) embryos
• Addressing underlying causes of implantation dysfunction (anatomical and immunologic uterine factors) and
• Exclusive use of ultrasound guidance for delivery of embryos transferred to the uterus.
Against this background, the use of FET has several decided advantages:
• The ability to cryostore surplus embryos left over after fresh embryo transfer
• The ability to safely hold embryos over for subsequent transfer in a later frozen embryo transfer (FET) cycle (i.e. Staggered IVF) in cases where:
1. Additional time is needed to perform preimplantation Genetic testing for embryo competency.
2. In cases where ovarian hyperstimulation increases the risk of life-endangering complications associated with critically severe ovarian hyperstimulation syndrome (OHSS).
3. To bank (stockpile) embryos for selective transfer of karyotypically normal embryos in older women or those who are diminished ovarian reserve
4. The ability to store embryos in cases of IVF with third party parenting (Egg Donation; Gestational Surrogacy and Embryo donation) and so improve convenience for those couples seeking such services.
Preimplantation Genetic Sampling with FET:
The introduction of preimplantation genetic sampling (PGS) to karyotyping of embryos for selective transfer of the most “competent” embryos, requires in most cases that the tested blastocysts be vitribanked while awaiting test results and then transferred to the uterus at a later date. Many IVF programs have advocated the routine use of PGS in IVF purported to improve IVF outcome. But PGS should in my opinion should only be used selectively. I do not believe that it is needed for all women undergoing IVF. First there is the significant additional cost involved and second it will not benefit everyone undergoing IVF, in my opinion.
While PGS is a good approach for older women and those with diminished ovarian reserve (DOR) and also for woman who experience recurrent pregnancy loss (RPL) or “unexplained” recurrent IVF failure recent data suggests that it will not improve IVF success rates in women under 36Y who have normal ovarian reserve, who represent the majority of women seeking IVF treatment. Nor is it needed in women (regardless of their age) undergoing IVF with eggs donated by a younger donor. This is because in such women about 1:2/3 of their eggs/embryos are usually chromosomally normal, and in most cases will upon fertilization produce multiple blastocysts per IVF attempt, anyway. Thus in such cases the transfer of 2 blastocysts will likely yield the same outcome regardless of whether the embryos had been subjected to PGS or not. The routine use of
It is another matter when it comes to women who have diminished ovarian reserve and/or DOR contemplating embryo banking and for women with unexplained recurrent IVF failure, recurrent pregnancy loss and women with alloimmune implantation dysfunction who regardless of their age or ovarian reserve require PGS for diagnostic reasons.
Embryo Banking: Some IVF centers are doing embryo banking cycles with Preimplantation Genetic Screening (PGS). With Embryo Banking” several IVF cycles are performed sequentially (usually about 2 months apart), up to the egg retrieval stage. The eggs are fertilized and the resulting advanced embryos are biopsied. The biopsy specimens are held over until enough 4-8 blastocysts have been vitribanked, thus providing a reasonable likelihood that one or more will turn out to be PGS-normal. At this point the biopsy specimens (derived all banking cycles) are sent for PGS testing at one time (a significant cost-saver), the chromosomally normal blastocysts are identified and the women are scheduled for timed FET procedures….. with a good prospect of a markedly improved chance of success as well as a reduced risk of miscarriage.
Standard (proposed) Regimen for preparing the uterus for frozen embryo transfer FET) is as follows:

The recipient’s cycle is initiated with an oral contraceptive-OC (e.g. Marvelon/Lo-Estrin; Lo-Ovral etc) for at least 10 days. This is later overlapped with 0.5 mg. (10 units) Lupron/Lucrin (or Superfact/Buserelin) daily for 3 days. Thereupon the OC is withdrawn and daily 0.25 mg (5 units) of Lupron/Lucrin/Superfact injections are continued. Menstruation will usually ensue within 1 week. At this point, an ultrasound examination is performed to exclude ovarian cyst(s) and a blood estradiol measurement is taken (it needs to be <70pg/ml). The daily Lupron/Lucrin/Superfact is continued until the initiation of progesterone therapy (see below).

Four milligram (4mg) Estradiol valerate (Delestrogen) IM is injected SC, twice weekly (on Tuesday and Friday), commencing within a few days of Lupron/Lucrin/Superfact-induced menstruation. Blood is drawn on Mondays and Thursdays for measurement of blood [E2]. This allows for planned adjustment of the E2V dosage scheduled for the next day. The objective is to achieve a plasma E2 concentration of 500-1,000pg/ml + an endometrial lining of >8mm, as assessed by ultrasound examination done after 10 days of estrogen exposure i.e. a day after the 3rd dosage of Delestrogen. The twice weekly, final (adjusted) dosage of E2V is continued until pregnancy is discounted by blood testing or an ultrasound examination. Dexamethasone 0.75 mg is taken orally, daily with the start of the Lupron/Lucrin/Superfact. This is continued until the 10th week of pregnancy or until pregnancy is discounted, at which point it is slowly tailed off over a 2 week period and stopped. Oral folic acid (1 mg) is taken daily commencing with the first E2V injection and is continued throughout gestation. Patients also receive Ciprofloxin 500mg BID orally starting with the initiation of Progesterone therapy and continuing for 10 days.

Luteal support commences 6 days prior to the ET, with intramuscular progesterone in oil (PIO) at an initial dose of 50 mg (P4-Day 1). Thereupon, (from the following day) , progesterone administration-Day 2, PIO is increased to 100 mg daily continuing until the 10th week of pregnancy, or until a blood pregnancy test/negative ultrasound (after the 6-7th gestational week), discounts a viable pregnancy.

Also, commencing on the day following the ET, the patient inserts one (1) vaginal progesterone suppository (100 mg) in the morning + 2mg E2V vaginal suppository (in the evening). This is continued until the 10th week of pregnancy or until pregnancy is discounted by blood testing or by an ultrasound examination done at the 6-7th gestational week. Dexamethasone 0.75mg is continued to the 10th week of pregnancy (tailed off from the 8th to 10th week) or as soon as pregnancy is ruled out. With the obvious exception of the fact that embryo recipients do not receive an hCG injections, luteal phase and early pregnancy hormonal support and immuno-suppression is otherwise the same as for conventional IVF patients. Blood pregnancy tests are performed 13 days and 15 days after the first P4 injection was given.

Note: Alternative progestational therapy in cases where intramuscular progesterone is not used: One (1) vaginal application of Crinone 8% is administered on the 1st day (referred to as luteal phase day 0 – LPO). On LP Day 1, they will commence the administration of Crinone 8% twice daily (AM and PM) until the day of embryo transfer. Withhold Crinone on the morning of the embryo transfer and resume Crinone administration in the PM. Crinone twice daily is resumed from the day after embryo transfer. Contingent upon positive blood pregnancy tests, and subsequently upon the ultrasound confirmation of a viable pregnancy, administration of Crinone twice daily are continued until the 10th week of pregnancy.

Regime for Thawing and Transferring Cryopreserved Embryos/Morulae/Blastocysts:

Geoff Sher

reply
Elizabeth

Thank you, Dr. Sher, for sharing your protocol. I am trying a natural cycle given that I have a contraindication to oral BC and am incredibly sensitive to intravaginal E2 (my estradiol level shot up 17 fold after 2 days on intravaginal estrogen!) If this fails I may have to try a medicated but would be a bit riskier. Such is life…fortunately I have 8 euploids on ice!
I was mostly worried that a progesterone level >1.5 would cause embryo endometrial asynchrony that I had read about with fresh transfers. I don’t really understand why it would cause it with a fresh but not an FET?

reply
Dr. Geoffrey Sher

I personally don,t think a progesterone of 1.5 is that dangerous in either setting.

Geoff Sher

reply
Jennifer E Heffler

Dr Sher
I am 38 yo, AMH 2.4,
chemical pregnancy in 2016, daughter from IUI in 2017, no fertility issues
Miscarriage at 9 weeks from IUI 3/2020

IVF 1: BCP for 4 weeks, then standard antagonist protocol with conservative dose of FSH (250). 15 follicles. Resulted in 10 eggs retrieved, 7 mature, 2 fertilized correctly, did not make it to blast for genetic testing.

IVF 2: BCP for 3 weeks, androderm priming patch, cyst aspirated after baseline. Microdose Lupron flare (they started this protocol 5 days post BCP which seemed late for me). Worse response than previous round: 5 eggs retrieved, 4 mature, 2 fertilized, none to blast.

My doctor planned to do the lupron flare protocol again for attempt 3. I started to do my own research and found that the flare protocol, as you state, may not be ideal in older women. Because i have very limited knowledge I suggested going back to standard antagonist protocol with higher med doses. He said he agreed. I consulted with another area MD who said they would likely do something completely different; no BCP, long down regulation, add menopur during stim and HGH.

Can you provide insight on the protocol you would suggest, as I am leaning toward moving on to this new doctor. Im extremely unsettled with my current doctor as I feel my previous cycles have been a mess and I am now the one driving the treatment and should not be!

Your thoughts on the androderm priming patch as well if you could. I’ve never had my testosterone levels checked but have no reason to believe they are out of normal range. Thank you for any input you can provide!

reply
Dr. Geoffrey Sher

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.
LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to grows and eggs to develop (ovogenesis) It follows that ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.
However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion, compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.
Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.
A significant percentage of older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.
In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F.
Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.
GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.
GnRH antagonists are traditionally given, starting after 5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.
My preferred Protocols for Controlled Ovarian Stimulation (COS):
1. “Long” GnRHa (Lupron/Buserelin/Superfact/Gonopeptyl) Pituitary Down-regulation Protocol: The most commonly prescribed protocol for GnRHa/gonadotropin administration is the so-called “long protocol”. Here, GnRHa is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH , which is rapidly followed by a precipitous fall to near zero. It is followed by a withdrawal bleed (menstruation), whereupon gonadotropin treatment should commence, while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the “long protocol” which I prefer prescribing for older women and in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a GnRHa-induced bleed, the agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I often supplement with human growth hormone (HGH) in such cases in an attempt to enhance egg mitochondrial activity and so enhance egg development. This approach is often augmented with preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
2.
3. Short (“Flare”) GnRHa Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients.
4. Estrogen Priming – This is the approach I sometimes prescribe for my patients who have virtually depleted ovarian reserve , as determined by very low blood anti-Mullerian hormone AMH levels (<0.2ng/ml or 2 pmol/L) and are thus likely to be very “poor responders”. It involves a modified A/ACP. We start with estrogen skin patches applied every 2nd day (or with the BCP) for 10 days or longer, overlap it for 3 days with a GnRHa whereupon the estrogen priming is stopped. Th GnRHa is continued until the onset of menstruation (usually 5-7 days later) to cause pituitary LH, down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, The patient is given twice-weekly injections of estradiol valerate (Delestrogen) for a period of 7-8 days whereupon COS is initiated using a relatively high dosage FSH-(Follistim, Fostimon, Puregon or Gonal F), which is continued along with daily administration of GnRH antagonist until the “hCG “trigger.” This approach is often augmented with HGH administration throughout the process of COS and by preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
Estrogen Priming has succeeded in significantly enhancing ovarian response to gonadotropins in many of otherwise very poor responders.
Triggering egg Maturation prior to egg Retrieval: hCG versus GnRHa
With ovulation induction using fertility drugs, the administration of 10,000U hCGu (Pregnyl; Profasi, Novarel) or 500mcg hCGr (Ovidrel/Ovitrel) “trigger”) sends the eggs (into maturational division (meiosis). This process is designed to halve the chromosome number, resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes they had prior to the “trigger”. Such a chromosomally numerically normal (euploid), mature (MII) eggs, upon being fertilized will (hopefully) propagate euploid embryos that have 46 chromosomes and will be “: competent” to propagate viable pregnancies. In my opinion, the key is to always “trigger” with no less than 10,000U of hCGu or 500mcg hCGr (Ovidrel/Ovitrel). Any lesser dosage often will reduce the efficiency of meiosis and increase the risk of the eggs being aneuploid. I personally do not use the agonist (Lupron) “trigger”, unless it is combined with (low dosage) hCG. The supposed reason for using the agonist, (Lupron) “trigger” is that by inducing meiosis through compelling a surge in the release of LH by the pituitary gland, the risk it reduces the risk of OHSS. This may be true, but it comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the likelihood of aneuploid and immature (MI) eggs. And there are other better approaches to preventing OHSS (e.g. “prolonged coasting”), in my opinion.
Use of the Birth Control Pill (BCP) to launch IVF-COS.
In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.
Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.
I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
• Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Brooklyn

Dear Doctor

I am trying to understand your conversion protocol. Birth control is used first to quiet the pituitary gland production of FSH, and especially LH in women like me who are prone to premature lutenization right? The part I don’t understand is the lupron. When you start the lupron it expunges more LH and also FSH when done over several day’s right? Then how is it that a woman would not be over suppressed and still get a good ovarian response to the stims with the combination of birth control and lupron?

A friend of mine has used this protocol twice. She said she had a way better ovarian response when she used lupron vs synarel. She got 26 eggs when using lupron and 16 with synarel. Do you know why that could be?

reply
Dr. Geoffrey Sher

We should talk this through.

Feel free to call my assistant Patti at 702-533-2691n and set up an online consultation.

Geoff Sher

reply
T&J

Hi Dr. Sher,
I recently had a failed FET and decided to go back and bank a couple more embryos before my next transfer. My doctor just performed a saline sono to confirm my uterus looked “good”. He said it was beautiful. We will be switching from oral estrogen to patches this time around. I went on birth control at the start of the cycle with the intention of taking it 14 days to move toward transfer cycle. Im a little worried about going for a transfer cycle after a birth control pill initiated menses. What is your opinion on this? Would you wait for a regular period or confidently transfer after a bcp initiated period

reply
Dr. Geoffrey Sher

Although my protocol for FET would differ somewhat, there is in my opinion, no problem with this approach!

Geoff Sher

reply
T&J

Thank you!! How would your protocol differ if you don’t mind me asking. Thanks in advance

reply
Dr. Geoffrey Sher

You would start your treatment cycle on a combined (monophasic) birth control pill-BCP (e.g, Desogen, Orthonovum 135; Low-Estrin) for 10 days (depending on circumstance), before commencing overlapping the BCP with Lupron (a GnRH agonist). Three days later the BCP is stopped and Lupron is continued (along with human growth hormone-Omnitrope) until menstruation occurs (usually 5-7 days) and blood E2 is at baseline and an US excludes the presence of cysts) . At this point, the GnRH-agonist is SUPPLANTED with a GnRH antagonist (e.g. Ganirelix, Cetrotide,or Orgalutron) which is administered daily in combination Gonadotropins until the hCG “trigger”. This is followed by egg retrieval about 36h later.
I introduced the A/ACP for women with diminishing ovarian reserve (DOR,) in order to counter the suppression effect of the conventional long Pituitary agonist down-regulation protocol using a BCP + a GnRH agonist (e.g. Lupron, Buserelin, Superfact; Decapeptyl, etc.) throughout the stimulation process. However, a BCP with a GnRH agonist overlap (for several days) is still required to launch the A/ACP protocol and here is why:
The administration of a GnRH-agonist several days before gonadotropin therapy is initiated, expunges FSH from its reservoir in the pituitary gland. The resulting surge in FSH converts preantral ovarian follicles to antral follicles which will respond optimally to subsequent ovarian stimulation with gonadotropins. In contrast, preantral follicles are incapable of responding optimally to stimulation with gonadotropins. Conversion of preantral to antral follicles is thus central to an optimal response to ovarian stimulation with gonadotropins and will not occur unless there is a premenstrual rise in FSH. It follows that when a BCP is given without overlapping with a GnRH agonist, antral follicle conversion will be suppressed, follicle development is often suppressed, the cycle of stimulation prolonged and egg/embryo quality compromised. Used along with a GnRH agonist in this way, the BCP will not suppress response to ovarian stimulation.
I currently prescribe the A/ACP to most of my IVF patients who have DOR. Results suggest that this is an optimal approach in such cases.
There is one potential draw back to the use of the A/ACP, in that the sustained use of a GnRH antagonist throughout the stimulation phase of the cycle, appears to compromise the predictive value of serial plasma estradiol measurements as a measure of follicle growth and development in that the estradiol levels tend to be much lower in comparison to cases where an agonist (e.g. Lupron) alone is used or where a “conventional” short GnRH antagonist protocol is employed. Rather than this being due to reduced production of estradiol by the ovary(ies), the lower blood concentration of estradiol seen with prolonged exposure to GnRH-antagonist, could be the result of a subtle, agonist-induced alteration in the configuration of the estradiol molecule , such that currently available commercial kits used to measure estradiol levels are rendered much less sensitive/specific. Thus, when the A/ACP is employed, we rely much more heavily on ultrasound growth of follicles along with observation of the trend in the rise of estradiol levels, than on absolute estradiol values. For this reason, I avoid prescribing the A/ACP in “high responders” who are predisposed to the development of severe ovarian hyperstimulation syndrome (OHSS) where accurate measurement of plasma estradiol plays a very important role in the safe management of their stimulation cycles.

Geoff Sher
702-533-2691

reply
Sammantha Asuega

Hello, I went for a ultrasound my provider said iam 6 weeks since we couldn’t hear a heart beat but we could see it during the US.

She did blood work for HVG quantitatives first draw was 56,000 48 hours it did not double it was 78,000. Are these ok number I asked if I could be miscarrying all she said was don’t worry just yet and that she wants me to repeat my blood work so now I’m of course worried since it’s my first pregnancy and my next US isn’t til September 4th. Any advice. I hear hcg doesn’t double after 6,000 and after 6 weeks it’s more about the ultrasounds

reply
Dr. Geoffrey Sher

I think you have3 reason to feel guardedly optimistic. I agree with the strategy beingb implemented by your RE.

Good luck and G-d bless!

Geoff Sher

reply
Beth

Hello, my husband and I have been trying for 4 years. Over this time we have tried:
– timed intercourse resulting in 2 chemical pregnancies
– 3 IUIs resulting in 1 chemical pregnancy
– 2 egg retrievals resulting in 5 genetically normal embryos
– 2 frozen embryo transfers resulting in 1 CP

I have completed a receptiva test and ERA which states that my timing for transfer was accurate and endometerin receptive. I tested positive for anti thyroid and am now taking a low dose of levothyroxine. My husband has an autoimmune disorder (psoriasis and psrioatic arthritis).

They want me to move onto intralipids my next frozen embryo cycle. This includes one infusion 40 days before and another a week before. They’ve said that I don’t need to get tested prior for Kn cells because most of the reports are inaccurate.

Do you agree not to get tested prior? Is there something the test will tell them regarding dosage of the intralipids that I should be asking about? Am I missing anything?

reply
Dr. Geoffrey Sher

I respectfully do not agree. In my opinion, you need to be tested in advance. Treatment would be predicated upon the results.

A: Why did IVF fail:

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
________________________________
B: Autoimmune thyroid disease and IVF outcome:

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e. infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from of thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies.
The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance.
It follows, that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies.
Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids, subsequently often results in a significant improvement in reproductive performance in such cases.
The fact that almost 50% of women who harbor antithyroid antibodies do not have activated CTL/NK cells suggests that it is NOT the antithyroid antibodies themselves that cause reproductive dysfunction. The activation of CTL and NK cells that occurs in half of the cases with TAI is probably an epiphenomenon with the associated reproductive dysfunction being due to CTL/NK cell activation that damages the early “root system” (trophoblast) of the implanting embryo. We have shown that treatment of those women who have thyroid antibodies + NKa/CTL using IL/steroids, improves subsequent reproductive performance while women with thyroid antibodies who do not harbor NKa/CTL do not require or benefit from such treatment.

__________________________________________
C: Managing IID:

Central to making a diagnosis of an immunologic implantation dysfunction (IID) is a need for the appropriate interpretation of Natural Killer Cell Activity (NKa). In this regard, one of the commonest and most serious errors, is interpret the blood concentration of natural killer cells as being relevant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. This activity can best be measured using the blood, K-562 target cell test (the gold standard). and/ or endometrial biopsy for cytokine activity.
With the K-562 test, the most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In addition to reporting the result of the K-562 test, in the “native state” (without adding, Immunoglobulin-G (IVIG) or Intralipid (IL) which many Laboratories erroneously do to try and determine whether either or both of these immune therapies would have a therapeutic benefit or is/are unlikely to be of clinical value. The entire premise upon which this assertion is based, is in my opinion flawed. Clinically such NK cell deactivation can only be significantly affected in vivo as it takes more than a week following infusion to occur. Thus, what happens to the percentage of target cells killed with the K-562 test, by adding IVIG or IL is in my opinion irrelevant
Another way to assess endometrial NKa is by measuring TH-1 and TH-2 cytokines in endometrial tissue derived through biopsy.TH-1 cytokines kill the trophoblast (the root system of the embryo). Thus if is an excess of TH-1 cytokine activity is found with/without a disruption in the TH-1: TH-2 ratio, this points to NK cell activation.
There are basically two causes of immunologic implantation dysfunction (IID), a) Autoimmune (85%) & , b) Alloimmune (15%). The former occurs when the body reacts to its own tissue and the latter (far less common) when the male and female partners share certain genotypic similarities involving DQ alpha and HLA genes. In both cases IID results in rejection of the pregnancy due to uterine Natural Killer (NK) Cell and T-cell activation leading to the release of an excessive amount of TH-1 cytokines. These, “toxins” attack the embryo’s root system (trophoblast), killing the cells and causing implantation to fail.
Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or endometrial cytokine activity tests.
It is important to recognize that currently there are only about 3 or 4 Reproductive Immunology Reference Laboratories in the U.S.A that, are capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity. I use a Reprosource, a laboratory located in Boston,MA.
Patients with Alloimmune implantation Dysfunction usually present with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive again or started having repeated early miscarriages. However, it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in an IID when there both a DQa/HLA match exists along with NK cell activation. With the exception of cases where both partners have a total (absolute DQa match and treatment requires the use of sperm from a non-matching sperm donor, about 90% of cases alloimmune implantation will have a partial match where 1: 2 embryos will match the woman’s DQa genotype and half will not. In cases of an alloimmune dysfunction (with associated NKa), treatment with IL or IVIG will in my opinion, will not protect against a matching embryo being rejected. It can only clear the NK environment for an embryo that does not match the woman’s DQa genotype. For this reason, it is my opinion that only 1 embryo should be transferred at a time because, given the fact that i:2 embryos will match, transferring >1 embryo at a time creates a risk that the matching embryo will evoke a local NKa/’cytokine response that will “muddy the water” for both. Thus, in cases of a “partial” DQa match I recommend against transferring more than a single embryo at a time.
.
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) Why did my IVF Fail
• Recurrent Pregnancy Loss (RPL): Why do I keep losing my Pregnancies
• Genetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
• A personalized, stepwise approach to IVF

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Josie

Hi there. I am 4 weeks pregnant and HCG was 560. In 4 days, it was 3435. To be checked again in 5 days. Twins run in my husband’s side of the family….thoughts?

reply
Josie

Hi there….thank you for your reply. So, my 5 week numbers are 11,400. Re cap: 4 weeks 560, 4 days later 3435. The nurse will not comment but I am wondering if definitely multiple?!? Thank you.

reply
Dr. Geoffrey Sher

That is because you cannot be definite on this. It is possible it is a multiple but that is about all that can be said right now. An US would be definitive.

Geoff Sher

reply
Josie

Thank you for your response!! I agree about the ultrasound and that is happening next week.
All those around me (Including some friends who are pregnant) are commenting on my high numbers!!! Stay safe!

Jess

Going for my 6th retrieval just turned 41. Protocol is Lupron 10 units for 9 days before stims and then 1.45 omnitrope, 600 Gonal f, and 150 menapur and triggering with noveral. Trying to get that normal embryo. I produce lots of eggs and most are mature and fertilize but only got 4 blasts last time out of 25 eggs retrieved. Last time we used same protocol without omnitrope and into 450 Gonal f and 150 menapur. My big worry is that he is increasing the Gonal? Is 600 too much? And will omnitrope help my quality?

reply
Dr. Geoffrey Sher

In general, I think your doctor has not put you on an unreasonable protocol. There are a few things I would likely do differently but they are not major. It is the supplementation of the protocol that counts. Having a sound strategy is only the 1st step. It is the implementation of the protocol during the cycle that really matters.

The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. So it is that older women have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in older women, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
Please visit my Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Dr. Geoffrey Sher

Sorry…I meant “implementation”, not “supplementation”.

Geoff Sher

reply
Jess

What would you do differently or what changes would you make ti this protocol?

Dr. Geoffrey Sher

I suggest you contact my assistant, Patti Converse (702-533-2691) and set up an online consultation with me to discuss!

Geoff Sher

Jessica

Hello – I am currently 11 weeks 3 days pregnant with a PGS normal embryo from IVF. My last ultrasound was at 10 weeks 5 days and the baby measured at 11 weeks with a heart beat of 167. I have a 1cm subchorionic hemorrhage which has caused a little bleeding / spotting the last 3 weeks. My Dr is not worried about my hemorrhage but it scares me every time I see spotting. What are my chances of miscarriage?!

reply
Dr. Geoffrey Sher

I agree with your doctor. All is likely to settle down. The SCH will likely absorb and things will turn out =fine.

Good luck!

Geoff Sher

reply
Cammie

I’m 42 years old and doing ivf. I had a 2 day fet transfer on the third of August. They transfered 2 eggs. I’m on crinone cream and estrogen medicine. I got a confirmed pregnancy with hcg at 50 on day 14 after embryo transfer. On day 16 my hcg was only 80. The doctor says she thinks it’s a miss carriage. On day 18 my hcg had gone up to 149. I’m so confused. It is going up and according the hcg charts online the levels are within normal so is there really no hope? And when will I bleed from the miss carriage then? I’ve got lots of pregnancy symptoms and haven’t bled anything.

reply
Dr. Geoffrey Sher

You need to wait this out and do a definitive ultrasound in about 10-14 days.

Good luck!

Geoff Sher

reply
Jennifer E Heffler

Dr. Sher
I’ve been reading as much of your work as possible over the past week. I am a 38 year old with what Im told is good reserve- AMH 2.4 I believe. I had a daughter via IUI now age 3. IUI attempt in feb 2020 ended in miscarriage at 9 weeks. IVF try #1 was use of BC fo 4 weeks, then standard antagonist protocol using low doses of follistim (250). Responded ok, retrieved 10 eggs, 7 mature, 4 fertilized, though 2 abnormally. The remaining 2 did not make it to blast for genetic testing. IVF #2 was microdose lupron flare with androderm priming patches and use of birth control prior to stim. Also aspirated a cyst days before started stim. Response was horrible- only 5 eggs retrieved, 4 mature, 2 fertilized, none to blast.

My Dr. wanted to do the flare protocol again. After lots of reading I really feel that a standard antagonist protocol using higher doses of follistim and no birth control prior is a better bet (thank you for that info). After discussion, he agreed that this is a better plan but also suggested a protocol in which cetrotide is used prior to cycle start as he thinks some of my eggs are maturing too quickly and theyre not getting a good batch at retrieval. I wanted to ask your thoughts on that protocol.

Also- I am guessing based on your reading that you would not recommend using the adroderm priming patch? He left this up to me, feeling that it may help but could not hurt. Based on your research, it looks as though there is the potential for this to harm, but other info I’ve read recommends its use, especially in older women. Also, do you have any thoughts on the presence of ovarian cyst, and draining of such prior to beginning stim? If it happens again Id like to know if I should request it be managed differently. Last, I have not taken birth control since prior to attempt 2 in July, and am scheduled for try 3 in September. Would you recommend being off birth control longer before another attempt?

Thank you so much for your work, And any additional information you can provide

reply
Dr. Geoffrey Sher

I am sure you understand that I cannot insert myself into treatment prescribed by another doctor. Also,I personally would not use flare protocols or use androgens if I were treating you. I would aspirate the cyst. I am also not in favor of using antagonists before the cycle begins.

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.
LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to grows and eggs to develop (ovogenesis) It follows that ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.
However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion, compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.
Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.
A significant percentage of older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.
In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F.
Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.
GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.
GnRH antagonists are traditionally given, starting after 5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.
My preferred Protocols for Controlled Ovarian Stimulation (COS):
1. “Long” GnRHa (Lupron/Buserelin/Superfact/Gonopeptyl) Pituitary Down-regulation Protocol: The most commonly prescribed protocol for GnRHa/gonadotropin administration is the so-called “long protocol”. Here, GnRHa is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH , which is rapidly followed by a precipitous fall to near zero. It is followed by a withdrawal bleed (menstruation), whereupon gonadotropin treatment should commence, while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the “long protocol” which I prefer prescribing for older women and in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a GnRHa-induced bleed, the agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I often supplement with human growth hormone (HGH) in such cases in an attempt to enhance egg mitochondrial activity and so enhance egg development. This approach is often augmented with preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
2.
3. Short (“Flare”) GnRHa Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients.
4. Estrogen Priming – This is the approach I sometimes prescribe for my patients who have virtually depleted ovarian reserve , as determined by very low blood anti-Mullerian hormone AMH levels (<0.2ng/ml or 2 pmol/L) and are thus likely to be very “poor responders”. It involves a modified A/ACP. We start with estrogen skin patches applied every 2nd day (or with the BCP) for 10 days or longer, overlap it for 3 days with a GnRHa whereupon the estrogen priming is stopped. Th GnRHa is continued until the onset of menstruation (usually 5-7 days later) to cause pituitary LH, down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, The patient is given twice-weekly injections of estradiol valerate (Delestrogen) for a period of 7-8 days whereupon COS is initiated using a relatively high dosage FSH-(Follistim, Fostimon, Puregon or Gonal F), which is continued along with daily administration of GnRH antagonist until the “hCG “trigger.” This approach is often augmented with HGH administration throughout the process of COS and by preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
Estrogen Priming has succeeded in significantly enhancing ovarian response to gonadotropins in many of otherwise very poor responders.
Triggering egg Maturation prior to egg Retrieval: hCG versus GnRHa
With ovulation induction using fertility drugs, the administration of 10,000U hCGu (Pregnyl; Profasi, Novarel) or 500mcg hCGr (Ovidrel/Ovitrel) “trigger”) sends the eggs (into maturational division (meiosis). This process is designed to halve the chromosome number, resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes they had prior to the “trigger”. Such a chromosomally numerically normal (euploid), mature (MII) eggs, upon being fertilized will (hopefully) propagate euploid embryos that have 46 chromosomes and will be “: competent” to propagate viable pregnancies. In my opinion, the key is to always “trigger” with no less than 10,000U of hCGu or 500mcg hCGr (Ovidrel/Ovitrel). Any lesser dosage often will reduce the efficiency of meiosis and increase the risk of the eggs being aneuploid. I personally do not use the agonist (Lupron) “trigger”, unless it is combined with (low dosage) hCG. The supposed reason for using the agonist, (Lupron) “trigger” is that by inducing meiosis through compelling a surge in the release of LH by the pituitary gland, the risk it reduces the risk of OHSS. This may be true, but it comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the likelihood of aneuploid and immature (MI) eggs. And there are other better approaches to preventing OHSS (e.g. “prolonged coasting”), in my opinion.
Use of the Birth Control Pill (BCP) to launch IVF-COS.
In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.
Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.
I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
• Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Heather Cyphers

My husband and I have had 5 miscarriages (One that was twins) after our healthy baby boy (2 1/2 yrs old now). We are both in our early 40’s with no underlying medical issues. We are currently 8 weeks pregnant with twins. Last ultrasound showed one collapsed And the other was difficult to see a heartbeat and as measuring at 10 days younger than the collapsed one. I ovulate twice a month. One at the beginning and then 2 weeks later so if they were conceived at different times the age difference would be understandable. But isn’t a heartbeat usually seen at 6 weeks 5 days? A yolk sac was seen but nothing else at this point. My hcg levels were 30,000 and two days later (seeing the collapsed one on sono) was 25,000. My dr said we’re looking at a double miscarriage again. Is there any possibility that the other baby was just to early to see growth and a heartbeat? It’s been a week since finding out. I do not have any cramping or bleeding. My chest still hurts and I’m still nauseous which I know can be from the high amounts of hcg still in my body. Just want to know if there’s any possibility medically from you’re view point of the second baby surviving? Than you ahead of time for any help with this. Also any idea why the multiple miscarriages after a healthy pregnancy 2 1/2 years ago?

reply
Dr. Geoffrey Sher

Hi Heather,

Anything is possible…However, in my opinion, this sadly this does not look very good.

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Natalia

Dear Dr Sher,

I gave my doctor your conversion IVF protocol. He created his protocol that seems to be quite different from yours: Birth control from the beginning of the cycle, for two weeks. Then five days nothing (expect period). Then Gonal F (225 units) and Menopur (75 units) for four days. Then start Ganirelix and continue Gonal F and Menopur for five days. Then HCG + Lupron for one day. Nothing for one day. and retrieval next day. I was wondering what’s your opinion on this protocol? I am 42. I had one baby through Mini IVF two years ago (in Japan). Thanks!

reply

Ask a question or post a comment

Your email address will not be published. Required fields are marked *