The Number of Embryos/Blastocysts Transferred & PGT: Effect on IVF Outcome:

A “competent” embryo is one that is chromosomally, genetically and metabolically capable of propagating a viable conceptus in-utero. Such an embryo will have the same chance of resulting in a baby whether it is transferred cleaved( on day 2,3,4) or as a blastocyst (day 5 or 6), post-fertilization.

Currently, we have no ability to reliably assess the genetic and metabolic integrity of an embryo. The only tools we currently have to rely on are: a) the embryo’s microscopic appearance and its rate of cell division (cleavage ate) and, b) its numeric chromosomal integrity as determined by preimplantation genetic testing  or PGT (the introduction of which, I proudly played a significant role >15 years ago). It is important to understand that embryos that fail to reach the blastocyst stage of development in culture, by day 5-6 post-fertilization are invariably “incompetent” and are thus unworthy of being transferred.  There is absolutely no truth to the assertion that cleaved embryos benefit through being transferred to the uterus earlier than the blastocyst stage of development or that cleaved embryos which otherwise would not develop into blastocysts while in culture, would have an improved chance of progressing to the blastocyst stage had they been transferred to the uterus earlier on. This is the reason why in most cases, enlightened IVF practitioners,  encourage their patients to keep their embryos in culture for 5-6 days before even considering them for transfer or deciding to subject them to biopsy for PGT to better assess their “competency”. But PGT, while an important advance, is only part of the story as it does not totally define embryo “competency”. It is simply a selection tool by which to  identifying and select  the best embryos for transfer or for discarding “incompetent” embryos.

The first step in assessing embryo “competency” is proof of normal fertilization, the second is the embryo’s cleavage rate and microscopic appearance. The third is the ability of the embryo to reach the expanded blastocyst stage of development by day 6 post-fertilization and the fourth and final test of embryo “competency”, is  PGT analysis.

Therefore, PGT does not enhance pregnancy cumulative pregnancy rate. Rather by taking an embryo through all 4 steps of “competency” it allows for enhanced selection of the one (or two) that are to be transferred.

The ability to better grade embryos “competency” by challenging their to reach the blastocyst stage of development in culture and then selectively performing PGT -analyses, provides an opportunity to improve the baby rate per embryo/blastocyst transferred and in the process allows for the transfer of fewer embryos at a time and thereby reduces the risks associated with multiple pregnancies.

There are numerous variables other than embryo “competency” that impact the likelihood of success or failure with IVF. The absence/presence/severity of anatomical or immunologic implantation factors , laboratory expertise and skill of the practicing physician are but a few . This makes it impossible to confidently predict success rates with IVF based solely upon the number of cleaved embryos or blastocysts transferred or even the results of PGT. It is of course self-evident that the further along the embryo is in development as well whether its  chromosomal integrity has been established (through through PGT) , all should contribute to making a the decision as to  how many to transfer at a time. In my practice, because of the risks associated with the inordinately high risks to mother and babies, associated with triplets or greater (high order multiple pregnancies,) I very rarely transfer more than 2 embryos at a time, whether they are cleaved, blastocysts or PGT-normal-euploid.

It is well to remember that whether you transfer 1 or >1 embryo at a time, in the final analysis, the overall number of babies yielded will likely be the same.  It might require that the woman undergo more embryo transfers to have a baby, if only 1 embryo is transferred at a time, but the incidence of multiple pregnancies with the associated risks to mother and offspring will be much lower.

14 Comments

Marie

Hello. I would appreciate your opinion please. I have just turned 42. I had a 9 week miscarriage (Turner Syndrome) in December, and am looking to do IVF again this year. We had decided to do NGS testing, however, my clinic (who specialise in tailored IVF protocols) has said that older eggs are at higher risk of not surviving the freezing/thawing process, so we could damage or weaken an otherwise healthy egg.

After 5 years of trying (and one blighted ovum miscarriage), I had IVF in 2017, which resulted in 7 eggs, 2 reaching blasto stage, both were put back in and one resulted in my 2 year old. I was pregnant 3 times last year, but had 1 x chemical MC, 1 x 5 week MC, and the 9 week MC I mentioned above. As I have a history of MC, and don’t seem to produce many eggs, would you recommend NGS, or just going for a fresh transfer of the best graded blasto eggs?
Thank you.

reply
Marie

Just to add to my earlier email, I have been identified as having high Cytokines, and had humira and intralipid treatment for my first IVF cycle (and during the pregnancy); and would undergo immunes testing and treatment (if necessary) again during this new IVF cycle. My clinic (in the UK) sends bloods to a specialist (Gold standard) place in Chicago to do the immunes testing.

reply
Dr. Geoffrey Sher

In my opinion, measurement of blood cytokines is not optimal. You need an endometrial biopsy with analysis of endometrial cytokines.

Moreover, doing a K-562 target cell blood test for natural killer cell activation is in my opinion, preferable.

Unless tests for immunologic implantation dysfunction (IID) are performed correctly and conducted by a one of the few reliable reproductive immunology reference laboratory in the United States, treatment will likely be unsuccessful. . In this regard it is most important that the right tests be ordered and that these be performed by a competent laboratory. There are in my opinion only a handful of reliable Reproductive Immunology Laboratories in the world and most are in the U.S.A. Also, it is my opinion that far too often, testing is inappropriate with the many redundant and incorrect tests being requested from and conducted by suboptimal laboratories. Finally for treatment to have the best chance of being successful, it is vital that the underlying type of IID (autoimmune IID versus alloimmune) be identified correctly and that the type, dosage, concentration and timing of treatments be carefully devised and implemented.

WHO SHOULD UNDERGO IID TESTING?
When it comes to who should be evaluated, the following conditions should in always raise a suspicion of an underlying IID, and trigger prompt testing:
• A diagnosis of endometriosis or the existence of symptoms suggestive of endometriosis (heavy/painful menstruation and pain with ovulation or with deep penetration during intercourse) I would however emphasize that a definitive diagnosis of endometriosis requires visualization of the lesions at laparoscopy or laparotomy)
• A personal or family history of autoimmune disease such as hyper/hypothyroidism (as those with elevated or depressed TSH blood levels, regardless of thyroid hormonal dysfunction), Lupus erythematosus, Rheumatoid arthritis, dermatomyositis, scleroderma etc.)
• “Unexplained” infertility
• Recurrent pregnancy loss (RPL)
• A history of having miscarried a conceptus that, upon testing of products of conception, was found to have a normal numerical chromosomal configuration (euploid).
• Unexplained IVF failure
• “Unexplained” intrauterine growth retardation due to placental insufficiency or late pregnancy loss of a chromosomally normal baby
What Parameters should be tested?
In my opinion, too many Reproductive Immunologists unnecessarily unload a barrage of costly IID tests on unsuspecting patients. In most cases the initial test should be for NK cell activation, and only if this is positive, is it necessary to expand the testing.
The parameters that require measurement include:
o For Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or uterine cytokine measurement. d) Endometrial cytokine analysis is also an acceptable way for testing uterine NKa. As far as the ideal environment for performing such tests, it is important to recognize that currently there are only about 5 or 6, Reproductive Immunology Reference Laboratories in the U.S capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity (in my opinion).
o For Alloimmune implantation Dysfunction: While alloimmune Implantation usually presents with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive started having repeated miscarriages it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK cell activation using the K-562 test or endometrial cytokine analysis.. It is important to note that any DQ alpha match (partial or complete) will only result in IID when there is concomitant NK/CTL activation (see elsewhere on this blog).

How should results be interpreted?
Central to making a diagnosis of an immunologic implantation dysfunction is the appropriate interpretation of natural killer cell activity (NKa) .In this regard, one of the commonest and most serious errors, is to regard the blood concentration of natural killer cells as being significant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. Then there is the interpretation of reported results. The most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In my opinion, trying to interpret the effect of adding IVIG or Intralipid to the sample in order assess whether and to what degree the use of these products would have a therapeutic benefit is seriously flawed and of little benefit. Clinically relevant NK cell deactivation can only be significantly effected in vivo and takes more than a week following infusion to occur. Thus what happens in the laboratory by adding these products to the sample prior to K-562 target cell testing is in my opinion likely irrelevant.
There exists a pervasive but blatant misconception on the part of many, that the addition of Intralipid (IL) /immunoglobulin-G IVIG) can have an immediate down-regulatory effect on NK cell activity. This has established a demand that Reproductive Immunology Reference Laboratories report on NK cell activity before and following exposure to IVIG and/or IL. However, the fact is that activated “functional” NK cells (NKa) cannot be deactivated in the laboratory. Effective down-regulation of activated NK cells can only be adequately accomplished if their activated “progenitor/parental” NK cells are first down-regulated. Thereupon once these down-regulated “precursor” NK cells are exposed to progesterone, they will begin spawning normal and functional NK cells, which takes about 10-14 days. It follows that to assess for a therapeutic response to IVIG/IL therapy would require that the patient first be treated (10-14 days prior to embryo transfer) and thereupon, about 2 weeks later, be retested. While at 1st glance this might seem to be a reasonable approach, in reality it would be of little clinical benefit because even if blood were to be drawn 10 -14 days after IL/IVIG treatment it would require an additional 10 days to receive results from the laboratory, by which time it would be far too late to be of practical advantage.

Neither IVIG nor IL is capable of significantly suppressing already activated “functional NK cells”. For this to happen, the IL/IVIG would have to down-regulate progenitor (parent) NK cell” activity. Thus, it should be infused 10-14 several prior to ovulation or progesterone administration so that the down-regulated “progenitor/precursor” NK cells” can propagate a sufficient number of normally regulated “functional NK cell” to be present at the implantation site 7 days later. In addition, to be effective, IL/IVIG therapy needs to be combined with steroid (dexamethasone/prednisone/prednisolone) therapy to down-regulates (often) concomitantly activated T-cells.
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) Why did my IVF Fail
• Recurrent Pregnancy Loss (RPL): Why do I keep losing my PregnanciesGenetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
• A personalized, stepwise approach to IVF

___________________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Hitherto I have personally performed IVF- treatment and related procedures on patients who, elected to travel to Las Vegas to be managed by me. However, with the launching of Sher-Fertility Solutions (SFS) in April 2019, I have taken on a new and expanded role. Now, rather than having hands-on involvement I confine my services to providing hour-long online Skype consultations to an ever-growing number of patients (emanating from >40 countries), with complex Reproductive problems, who seek access to my input, advice and guidance. All Skype consultations are followed by a detailed written report that meticulously describes and explains my recommendations for treatment. All patients are encouraged to share this report with their personal treating doctor(s), with whom [subject to consent and a request from their doctor] I will, gladly discuss their case with the “treating Physician”.
Through SFS I am now able to conveniently provide those who because of geography, convenience and cost, prefer to be treated at home or elsewhere by their chosen Infertility Physician.
“I wish to emphasize to all patients with whom I consult, that in the final analyses, when it comes to management, strategy, protocol and implementation of treatment, my advice and recommendations are always superseded by that of the hands-on treating Physician”.

Anyone wishing to schedule a Skype consultation with me, can do so by: Calling my concierge (Patti Converse) at 1-800-780-7437 (in the U.S.A or Canada) or 702-533-2691, for an appointment. Patients can also enroll online on my website, http://www.SherIVF.com, or email Patti at concierge@SherIVF.com .
I was very recently greatly honored in receiving an award by the prestigious; International Association of Top Professionals (IAOTP). For more information, go to the press release on my website, http://www.sherIVF.com .

PLEASE HELP SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Dr. Geoffrey Sher

I respectfully do not agree with the opinion that you should avoid PGS. In fact , I think given your history that this is imperative in your case. I also believe that selection of the optimal stimulation protocol is also essential.

The older a woman becomes, the more likely it is that her eggs will be chromosomally/genetically “incompetent” (not have the potential upon being fertilized and transferred, to result in a viable pregnancy). That is why, the likelihood of failure to conceive, miscarrying and of giving birth to a chromosomally defective child (e.g. with Down Syndrome) increases with the woman’s advancing age. In addition, as women age beyond 35Y there is commonly a progressive diminution in the number of eggs left in the ovaries, i.e. diminished ovarian reserve (DOR). So it is that older women as well as those who (regardless of age) have DOR have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production of LH biological activity which can result in excessive LH-induced ovarian male hormone (predominantly testosterone) production which in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the age-related effect on the woman’s “biological clock, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in older women and those with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy

Also, given your recurrent pregnancy kloss there are other issues that must be considered.

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Wiley

Dear Dr Sher,

I hope this e-mail finds you well.

I am 41 years old and have completed 3 rounds of IUI, unsuccessfully, using donor sperm. Final round was cancelled due to overstimulation, I apparently respond very well to Menopur (75 IUI on first 2 rounds, taken every other day and final attempt, it was increased to 75 IUI each day).

In terms of my background I have AMH of 39 pmol/L and understand this is fairly good for my age, my hormone levels are within normal range and my Karytope result is normal. I’ve recently returned to the clinic to have baseline scan to start IVF process and there was a small cyst, 1cm in size found in one of my ovaries. I have not had any cysts previously and thought this would mean I wouldn’t be able to proceed with the IVF process. However, the nurse advised that the Dr reviewed the scan and is happy for me to proceed with treatment today. The sonographer said it was perhaps the corpus luteum – is it normal to see them day 3 of my cycle? I asked about the cyst and was advised that it’s small in size. I assume the cyst is possibly residue from the overstimulated IUI cycle where I had several mature follicles (i.e. too many for IUI). Given the cost of IVF, both from a financial and time perspective, I am a bit concerned about proceeding if the cyst can impact the outcome. Is this a valid concern or do you think given the cyst size it’s unlikely to cause a negative impact? If I do proceed, I assume it makes sense to monitor the cyst, i.e. to check there’s no growth.

Furthermore, if I’ve understood some of your posts correctly, you strongly believe in providing a tailored IVF protocol for patients dependent on their individual circumstances. In particular, you emphasise the over administration of LH and its negative impact on successful outcomes particularly for those with DOR or are older. My IVF protocol comprises daily doses of 150 IUI of Menopur and I’m a bit concerned that this is not the right IVF protocol. I am going to do PGT testing, because although there 70/30 possibility I will have no balanced embryos for transfer, I think this reduces the time spent pursuing a process that’s unlikely to work.

Thanks for your time and help in advance.

Kind regards

reply
Dr. Geoffrey Sher

I agree with your doctor that you should proceed. Given you very adequate ovarian reserve, I think you should do quite well!

G-d bless!

Geoff Sher

reply
Margie

Dr sher would you recommend to transfer a mosaic embryo where the result shows 2 copies of chromosome 9 missing at 70% in each cell.

reply
Dr. Geoffrey Sher

I probably would still transfer it! However, this decision is between you and your treating Physician.

Geoff Sher

reply
Machi

I have gone through my second cycle of IVF. Here is the result from 1st to 2nd.
I’m at the age of 39…

Here is the history of my cycles:
In my first cycle (at the age of 38), I had 22 eggs retrieved, 12 matured, 9 fertilized, 8 day3, 2 blastocyst day5, 1 normal PGS but did not implant.
I just had 2nd retrieval, I had 24 eggs retrieved, 17 matured, 12 fertilized, 12 day3, 5 blastocysts on day 6 (did not blastocyst on day 5) + 1 blastocyst on day 7. 5 abnormal and 1 unknown. I have not decided what I will do with them yet.
I also have done supplements, IV for vitamins, acupuncture/cold laser therapy, wheatgrass and spirulina, bone broth during the 2nd cycle recommended by my acupuncturist and naturopath.

In regards to PGS tested embryos, would you recommend me to transfer unknown/abnormal embryo knowing that there are risks of miscarriage and non-implantation? Or, would you recommend another cycle of IVF?

reply
Dr. Geoffrey Sher

I would do another cycle of IVF but I would stress the need for a very individualized stimulation protocol and PGS testing.

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.
LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to grows and eggs to develop (ovogenesis) It follows that ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.
However, the emphasis is on a “small” amount of testosterone. Over-exposure of the follicle to testosterone can compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.
Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.
Many older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.
In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F.
Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.
GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.
GnRH antagonists are traditionally given, starting after 5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.
My preferred Protocols for Controlled Ovarian Stimulation (COS):
1. “Long” GnRHa (Lupron/Buserelin/Superfact/Gonopeptyl) Pituitary Down-regulation Protocol: The most commonly prescribed protocol for GnRHa/gonadotropin administration is the so-called “long protocol”. Here, GnRHa is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH , which is rapidly followed by a precipitous fall to near zero. It is followed by a withdrawal bleed (menstruation), whereupon gonadotropin treatment should commence, while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the “long protocol” which I prefer prescribing for older women and in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a GnRHa-induced bleed, the agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I often supplement with human growth hormone (HGH) in such cases in an attempt to enhance egg mitochondrial activity and so enhance egg development. This approach is often augmented with preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
2.
3. Short (“Flare”) GnRHa Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients.
4. Estrogen Priming – This is the approach I sometimes prescribe for my patients who have virtually depleted ovarian reserve , as determined by very low blood anti-Mullerian hormone AMH levels (<0.2ng/ml or 2 pmol/L) and are thus likely to be very “poor responders”. It involves a modified A/ACP. We start with estrogen skin patches applied every 2nd day (or with the BCP) for 10 days or longer, overlap it for 3 days with a GnRHa whereupon the estrogen priming is stopped. Th GnRHa is continued until the onset of menstruation (usually 5-7 days later) to cause pituitary LH, down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, The patient is given twice-weekly injections of estradiol valerate (Delestrogen) for a period of 7-8 days whereupon COS is initiated using a relatively high dosage FSH-(Follistim, Fostimon, Puregon or Gonal F), which is continued along with daily administration of GnRH antagonist until the “hCG “trigger.” This approach is often augmented with HGH administration throughout the process of COS and by preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
Estrogen Priming has succeeded in significantly enhancing ovarian response to gonadotropins in many of otherwise very poor responders.
Triggering egg Maturation prior to egg Retrieval: hCG versus GnRHa
With ovulation induction using fertility drugs, the administration of 10,000U hCGu (Pregnyl; Profasi, Novarel) or 500mcg hCGr (Ovidrel/Ovitrel) “trigger”) sends the eggs (into maturational division (meiosis). This process is designed to halve the chromosome number, resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes they had prior to the “trigger”. Such a chromosomally numerically normal (euploid), mature (MII) eggs, upon being fertilized will (hopefully) propagate euploid embryos that have 46 chromosomes and will be “: competent” to propagate viable pregnancies. In my opinion, the key is to always “trigger” with no less than 10,000U of hCGu or 500mcg hCGr (Ovidrel/Ovitrel). Any lesser dosage often will reduce the efficiency of meiosis and increase the risk of the eggs being aneuploid. I personally do not use the agonist (Lupron) “trigger”, unless it is combined with (low dosage) hCG. The supposed reason for using the agonist, (Lupron) “trigger” is that by inducing meiosis through compelling a surge in the release of LH by the pituitary gland, the risk it reduces the risk of OHSS. This may be true, but it comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the likelihood of aneuploid and immature (MI) eggs. And there are other better approaches to preventing OHSS (e.g. “prolonged coasting”), in my opinion.
Use of the Birth Control Pill (BCP) to launch IVF-COS.
In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.
Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.
I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
• Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Machi

Hello, Dr. Sher. Thank you for your response. I have a couple more questions.
1. Do you recommend not to transfer the abnormal embryo even if some studies show that PGS-A testing is not 100% accurate and does not mean that cannot reach live birth?
2. Would you still recommend doing PGS-A testing even if the accuracy might not be 100%?
3. My Estradiol level was 16420 pmol/L a day before the trigger shot. Does this mean that embryos could have been fried due to a high estrogen level? Could this impact the PGS-A outcome?
4. My AMH level is 56.7 pmol/L. Is this still consider DOR due to poor PGS-A test outcome?

reply
Dr. Geoffrey Sher

1. Do you recommend not to transfer the abnormal embryo even if some studies show that PGS-A testing is not 100% accurate and does not mean that cannot reach live birth?

A: In my opinion, a complex abnormal ermbryo ( with >2 chromosomes affected) should not be transferred.

2. Would you still recommend doing PGS-A testing even if the accuracy might not be 100%?

A: Yes!

3. My Estradiol level was 16420 pmol/L a day before the trigger shot. Does this mean that embryos could have been fried due to a high estrogen level? Could this impact the PGS-A outcome?

A: The answer to both issues is a guarded yes! However, I would need much more detail to respond authoritatively.

4. My AMH level is 56.7 pmol/L. Is this still consider DOR due to poor PGS-A test outcome?

A: Absolutely not. The normal AMH is 15pmol/L. Thus you likely have a very high reserve.

Good luck!

Geoff Sher

reply
Mia

I know I asked this but I just want to confirm again, which two would you transfer as my RE is telling me to do one at a time; Of these which would you do first followed by the second transfer.
Your guidance will help greatly..
1-bs 45,xx,-6,+7,-14 ab
2-bs 48,xx,+3,+21 ab
3-bs 45,xx,-11(mos)
4-bs 46,xx,dup(6)(p11,2p25)
5-bs complex ab (mos)

reply

Ask a question or post a comment

Your email address will not be published. Required fields are marked *